Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 00000000	Conclusion O	References

BSML and Expressive Completeness

Aleksi Anttila¹, Søren Brinck Knudstorp²

¹University of Helsinki ²University of Amsterdam

NihiL seminar ILLC, University of Amsterdam

<ロ><日><日><日><日><日><日><日><日><日><日><1/24

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic	Conclusion 0	References
Outline for the	talk					

- Background and Motivation
- Preliminaries

What is **BSML**? What is expressive completeness?

- Expressive Completeness of $\ensuremath{\mathsf{BSML}}$
- Convex Team Logic
- Conclusion

- Among more, Aleksi introduced two extensions of **BSML**, and proved that they were expressively completely for all properties [invariant under bounded bisimulation] and all union-closed properties, respectively.
- The problem of characterizing the expressive power of **BSML** was left open.

Today (last NihiL talk before Summer hiatus):

- We show that **BSML** is expressively complete for all convex, union-closed properties.
- We introduce a logic which is expressively complete for all convex properties simpliciter.

- Characterization of logic (à la van Benthem)
- Provides normal form
- Normal form as heuristic for proof theory

- Among more, Aleksi introduced two extensions of **BSML**, and proved that they were expressively completely for all properties [invariant under bounded bisimulation] and all union-closed properties, respectively.
- The problem of characterizing the expressive power of **BSML** was left open.

Today (last NihiL talk before Summer hiatus):

- We show that **BSML** is expressively complete for all convex, union-closed properties.
- We introduce a logic which is expressively complete for all convex properties simpliciter.

- Characterization of logic (à la van Benthem)
- Provides normal form
- Normal form as heuristic for proof theory

Background and Motivation ●○	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic	Conclusion 0	References
Background ar	id Motiva	ation				

- Among more, Aleksi introduced two extensions of **BSML**, and proved that they were expressively completely for all properties [invariant under bounded bisimulation] and all union-closed properties, respectively.
- The problem of characterizing the expressive power of **BSML** was left open.

Today (last NihiL talk before Summer hiatus):

- We show that **BSML** is expressively complete for all convex, union-closed properties.
- We introduce a logic which is expressively complete for all convex properties simpliciter.

- Characterization of logic (à la van Benthem)
- Provides normal form
- Normal form as heuristic for proof theory

- Among more, Aleksi introduced two extensions of **BSML**, and proved that they were expressively completely for all properties [invariant under bounded bisimulation] and all union-closed properties, respectively.
- The problem of characterizing the expressive power of **BSML** was left open.

Today (last NihiL talk before Summer hiatus):

- We show that **BSML** is expressively complete for all convex, union-closed properties.
- We introduce a logic which is expressively complete for all convex properties simpliciter.

- Characterization of logic (à la van Benthem)
- Provides normal form
- Normal form as heuristic for proof theory

- Among more, Aleksi introduced two extensions of **BSML**, and proved that they were expressively completely for all properties [invariant under bounded bisimulation] and all union-closed properties, respectively.
- The problem of characterizing the expressive power of **BSML** was left open.

Today (last NihiL talk before Summer hiatus):

- We show that **BSML** is expressively complete for all convex, union-closed properties.
- We introduce a logic which is expressively complete for all convex properties simpliciter.

- Characterization of logic (à la van Benthem)
- Provides normal form
- Normal form as heuristic for proof theory

- Among more, Aleksi introduced two extensions of **BSML**, and proved that they were expressively completely for all properties [invariant under bounded bisimulation] and all union-closed properties, respectively.
- The problem of characterizing the expressive power of **BSML** was left open.

Today (last NihiL talk before Summer hiatus):

- We show that **BSML** is expressively complete for all convex, union-closed properties.
- We introduce a logic which is expressively complete for all convex properties simpliciter.

- Characterization of logic (à la van Benthem)
- Provides normal form
- Normal form as heuristic for proof theory

- Among more, Aleksi introduced two extensions of **BSML**, and proved that they were expressively completely for all properties [invariant under bounded bisimulation] and all union-closed properties, respectively.
- The problem of characterizing the expressive power of **BSML** was left open.

Today (last NihiL talk before Summer hiatus):

- We show that **BSML** is expressively complete for all convex, union-closed properties.
- We introduce a logic which is expressively complete for all convex properties simpliciter.

- Characterization of logic (à la van Benthem)
- Provides normal form
- Normal form as heuristic for proof theory

Background and Motivation ○●	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic	Conclusion O	References

Expressive powers compared:

Background and Motivation	Preliminaries ●0000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic	Conclusion O	References
Background and Motivation	Preliminaries •0000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 00000000	Conclusion O	Referenc

Syntax of **BSML**

$$\phi ::= p \mid \neg \phi \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid \diamondsuit \phi \mid \text{NE}$$

Semantics for support (\models)

$$s \vDash p \iff \forall w \in s : w \in V(p)$$

$$s \vDash \neg \phi \iff s \dashv \phi$$

$$s \vDash \phi \land \psi \iff s \vDash \phi \text{ and } s \vDash \psi$$

$$s \vDash \phi \land \psi \iff \exists t, t' : t \cup t' = s \text{ and } t \vDash \phi \text{ and } t' \vDash \psi$$

$$s \vDash \Diamond \phi \iff \forall w \in s : \exists t \subseteq R[w] : t \neq \emptyset \text{ and } t \vDash \phi$$

$$s \vDash \mathsf{NE} \iff s \neq \emptyset$$

 $R[w] = \{v \in W \mid wRv\}$

xpressive Completeness of BSML Convexi	ty Convex Team Logic (00000000	Conclusion References
	pressive Completeness of BSML Convexi	pressive Completeness of BSML Convexity Convex Team Logic Co 00 00000000 000000000000000000000000

Syntax of **BSML**

$$\phi ::= p \mid \neg \phi \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid \diamondsuit \phi \mid \text{NE}$$

Semantics for support (\models)

$$\begin{array}{lll} s \vDash p & \Longleftrightarrow & \forall w \in s : w \in V(p) \\ s \vDash \neg \phi & \Longleftrightarrow & s \dashv \phi \\ s \vDash \phi \land \psi & \Longleftrightarrow & s \vDash \phi \text{ and } s \vDash \psi \\ s \vDash \phi \lor \psi & \Longleftrightarrow & \exists t, t' : t \cup t' = s \text{ and } t \vDash \phi \text{ and } t' \vDash \psi \\ s \vDash \Diamond \phi & \Longleftrightarrow & \forall w \in s : \exists t \subseteq R[w] : t \neq \emptyset \text{ and } t \vDash \phi \\ s \vDash \operatorname{NE} & \Longleftrightarrow & s \neq \emptyset \end{array}$$

 $R[w] = \{v \in W \mid wRv\}$

Background and Motivation	naries Expressive Completeness o 000	of BSML Convexity	Convex Team Logic	Conclusion O	References
---------------------------	---	-------------------	-------------------	-----------------	------------

Split disjunction ' \lor ' and the non-emptiness atom 'NE'

$$\begin{array}{lll} s \vDash \phi \lor \psi & \Longleftrightarrow & \exists t, t': & t \cup t' = s, t \vDash \phi, \ t' \vDash \psi \\ s \vDash \mathrm{NE} & \Longleftrightarrow & s \neq \varnothing \end{array}$$

<□ > < ⓓ > < ≣ > < ≣ > ≡ < ⊃ < ⊙ 6/24

Definition

- A *pointed state model* is a pair (M, s) where M is a model over **P** and s is a state on M.
- A (state) property is a class of pointed state models {(M, s)}.
- For a formula ϕ , we define its state property as $\|\phi\| \coloneqq \{(M,s) \mid M, s \models \phi\}$.

Definition (Expressive Completeness)

We say that a logic (or language) ${\cal L}$ is *expressively complete* for a class of properties ${\cal C}$:iff

Definition

- A pointed state model is a pair (M, s) where M is a model over **P** and s is a state on M.
- A *(state) property* is a class of pointed state models {*(M,s)*}.
- For a formula ϕ , we define its state property as $\|\phi\| \coloneqq \{(M, s) \mid M, s \models \phi\}$.

Definition (Expressive Completeness)

We say that a logic (or language) \mathcal{L} is *expressively complete* for a class of properties \mathcal{C} :iff

Definition

- A *pointed state model* is a pair (M, s) where M is a model over **P** and s is a state on M.
- A *(state) property* is a class of pointed state models {(*M*,*s*)}.
- For a formula ϕ , we define its state property as $\|\phi\| \coloneqq \{(M, s) \mid M, s \models \phi\}$.

Definition (Expressive Completeness)

We say that a logic (or language) $\mathcal L$ is *expressively complete* for a class of properties $\mathcal C$:iff

Definition

- A *pointed state model* is a pair (M, s) where M is a model over **P** and s is a state on M.
- A *(state) property* is a class of pointed state models {(*M*,*s*)}.
- For a formula ϕ , we define its state property as $\|\phi\| \coloneqq \{(M, s) \mid M, s \models \phi\}$.

Definition (Expressive Completeness)

We say that a logic (or language) \mathcal{L} is *expressively complete* for a class of properties \mathcal{C} :iff

Definition

- A pointed state model is a pair (M, s) where M is a model over **P** and s is a state on M.
- A (state) property is a class of pointed state models {(M, s)}.
- For a formula ϕ , we define its state property as $\|\phi\| \coloneqq \{(M, s) \mid M, s \models \phi\}$.

Definition (Expressive Completeness)

We say that a logic (or language) \mathcal{L} is *expressively complete* for a class of properties \mathcal{C} :iff

ickg D	ground and Motivation	Preliminaries 00000	Expressive Completeness o	of BSML	Convexity 00	Convex Team Logic 00000000	Conclusion O	Referen
	Definition (Closu	re properties)						
	We say that							
	ϕ is down	vard closed	iff	[<i>M</i> , <i>s</i> ⊧	$=\phi$ and $t \subseteq$	$[s] \implies M, t \models q$	6	
	ϕ is union	closed	iff	[<i>M</i> , <i>s</i> ⊧	= ϕ for all .	$s \in S \neq \emptyset] \implies h$	$I, \bigcup S \vDash \phi$	
	ϕ has the	empty state pr	operty iff	$M, \emptyset \models$	= ϕ for all I	M		
	ϕ is <i>flat</i>		iff	$M, s \models$	$\phi \iff M$	$m{l},\{m{w}\}\models\phi$ for all	<i>w</i> ∈ <i>s</i>	

And observe: For formulas α in classical modal logic **ML** (no NE):

 $s \models \alpha \iff \forall w \in s : \{w\} \models \alpha \iff \forall w \in s : w \models \alpha$

ickg)	ground and Motivation	Preliminaries 000●0	Expressive Completeness	of BSML	Convexity 00	Convex Team Logic 00000000	Conclusion O	Referen
	Definition (Closu	ire properties)						
	We say that							
	ϕ is down	vard closed	iff	[<i>M</i> , <i>s</i>	$= \phi$ and $t \subseteq$	$[s] \implies M, t \models q$	þ	
	ϕ is <i>union</i>	closed	iff	[<i>M</i> , <i>s</i>	$=\phi$ for all .	$s \in S \neq \emptyset] \implies h$	$I, \bigcup S \vDash \phi$	
	ϕ has the	empty state p	roperty iff	<i>M</i> ,Ø⊧	= ϕ for all I	M		
	ϕ is flat		iff	$M, s \models$	$\phi \iff M$	$m{I}, \{m{w}\} \models \phi$ for all	$w \in s$	

And observe: For formulas α in classical modal logic **ML** (no NE):

Ba

 $s \models \alpha \iff \forall w \in s : \{w\} \models \alpha \iff \forall w \in s : w \models \alpha$

ickg D	ground and Motivation	Preliminaries 00000	Expressive Completeness o	of BSML	Convexity 00	Convex Team Logic 00000000	Conclusion O	Referen
	Definition (Closu	re properties)						
	We say that							
	ϕ is down	vard closed	iff	[<i>M</i> , <i>s</i> ⊧	$=\phi$ and $t \subseteq$	$[s] \implies M, t \models q$	6	
	ϕ is union	closed	iff	[<i>M</i> , <i>s</i> ⊧	= ϕ for all .	$s \in S \neq \emptyset] \implies h$	$I, \bigcup S \vDash \phi$	
	ϕ has the	empty state pr	operty iff	$M, \emptyset \models$	= ϕ for all I	M		
	ϕ is <i>flat</i>		iff	$M, s \models$	$\phi \iff M$	$m{l},\{m{w}\}\models\phi$ for all	<i>w</i> ∈ <i>s</i>	

And observe: For formulas α in classical modal logic **ML** (no NE):

 $s \models \alpha \iff \forall w \in s : \{w\} \models \alpha \iff \forall w \in s : w \models \alpha$

Proposition $\{ ||\phi|| \mid \phi \in ML \}$ $\{ property \mathcal{P} \mid \mathcal{P} \text{ is flat and invariant under bounded bisimulation } \}$

8/24

acką D	ground and Motivation	Preliminaries 000€0	Expressive Completeness (of BSML	Convexity 00	Convex Team Logic 00000000	Conclusion O	Referen
	Definition (Closu	ire properties)						
	We say that							
	ϕ is down	vard closed	iff	[<i>M</i> , <i>s</i>	$= \phi$ and $t \subseteq$	$[s] \implies M, t \models q$	6	
	ϕ is <i>union</i>	closed	iff	[<i>M</i> , <i>s</i>	$=\phi$ for all :	$s \in S \neq \emptyset] \implies h$	$I, \bigcup S \vDash \phi$	
	ϕ has the	empty state pr	operty iff	<i>M</i> ,Ø⊧	= ϕ for all I	Μ		
	ϕ is flat		iff	$\pmb{M}, \pmb{s} \models$	$\phi \iff M$	$m{l},\{m{w}\}\models\phi$ for all	$w \in s$	

And observe: For formulas α in classical modal logic **ML** (no NE):

 $s \models \alpha \iff \forall w \in s : \{w\} \models \alpha \iff \forall w \in s : w \models \alpha$

Proposition

Ba

We say that a property \mathcal{P} is *invariant under bounded bisimulation* :iff it is invariant under k-bisimulation for some $k \in \omega$.

Fact

Restricting to our finite set of propositional letters P, for any world $w \in M$, we can define Hintikka formulas $\chi_w^k \in ML$ s.t. for all w':

$$w' \models \chi_w^k \iff w \rightleftharpoons_k w'$$

Thus, for any team t, we can define formulas $\chi_t^k := \bigvee_{w \in t} \chi_w^k$ s.t.

$$t' \vDash \chi_t^k \iff t' \subseteq s \rightleftharpoons_k t$$

9/24

We say that a property \mathcal{P} is *invariant under bounded bisimulation* :iff it is invariant under k-bisimulation for some $k \in \omega$.

Fact

Restricting to our finite set of propositional letters **P**, for any world $w \in M$, we can define Hintikka formulas $\chi_w^k \in \mathbf{ML}$ s.t. for all w':

$$w' \models \chi_w^k \iff w \rightleftharpoons_k w'$$

Thus, for any team t, we can define formulas $\chi_t^k := \bigvee_{w \in t} \chi_w^k$ s.t.

$$t' \vDash \chi_t^k \iff t' \subseteq s \rightleftharpoons_k t$$

9/24

We say that a property \mathcal{P} is *invariant under bounded bisimulation* :iff it is invariant under k-bisimulation for some $k \in \omega$.

Fact

Restricting to our finite set of propositional letters **P**, for any world $w \in M$, we can define Hintikka formulas $\chi_w^k \in \mathbf{ML}$ s.t. for all w':

$$w' \vDash \chi_w^k \iff w \rightleftharpoons_k w'$$

Thus, for any team t, we can define formulas $\chi_t^{\kappa} \coloneqq \bigvee_{w \in t} \chi_w^{\kappa}$ s.t.

$$t' \vDash \chi_t^k \iff t' \subseteq s \rightleftharpoons_k t$$

We say that a property \mathcal{P} is *invariant under bounded bisimulation* :iff it is invariant under k-bisimulation for some $k \in \omega$.

Fact

Restricting to our finite set of propositional letters **P**, for any world $w \in M$, we can define Hintikka formulas $\chi_w^k \in \mathbf{ML}$ s.t. for all w':

$$w' \models \chi_w^k \iff w \rightleftharpoons_k w'$$

Thus, for any team t, we can define formulas $\chi_t^k := \bigvee_{w \in t} \chi_w^k$ s.t.

$$t' \vDash \chi_t^k \iff t' \subseteq s \rightleftharpoons_k t$$

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 00000000	Conclusion O	Reference			
Theorem (Alon	i, Anttila, Ya	ang [2023])							
B	$\ \mathcal{BSML}^{ee}\ = \{ property \ \mathcal{P} \mid \mathcal{P} \text{ is invariant under bounded bisimulation} \}$								
and									
$\ \mathcal{BSML}^{\circ}\ $	= {property	$\mathcal{P} \mathcal{P}$ is union closed and	d invariant i	under bounded bi	isimulation	}			
Definition									

We say that a formula ϕ is *convex* :iff

if
$$t \models \phi, t'' \models \phi$$
 and $t \subseteq t' \subseteq t''$, then $t' \models \phi$.

Theorem (expressive completeness of **BSML**)

 $\|\mathcal{BSML}\| = \{\text{property } \mathcal{P} \mid \mathcal{P} \text{ is convex, union closed and invariant under bounded bisimulation}\}$

・ロト・日本・モン・モン・モン・ロンペペ 10/24

Backg 00	ground and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 00000000	Conclusion O	Reference
	Theorem (Aloni,	Anttila, Ya	ang [2023])				
	$\ \mathcal{BSML}^{\mathbb{W}}\ = \{\text{property } \mathcal{P} \mid \mathcal{P} \text{ is invariant under bounded bisimulation}\}$						
	and						
	$\ \mathcal{BSML}^{\oslash}\ =$	{property	$\mathcal{P} \mathcal{P}$ is union closed and	invariant	under bounded bi	simulation	}

We say that a formula ϕ is convex: iff

if
$$t \models \phi, t'' \models \phi$$
 and $t \subseteq t' \subseteq t''$, then $t' \models \phi$.

Theorem (expressive completeness of **BSML**)

 $\|\mathcal{BSML}\| = \{\text{property } \mathcal{P} \mid \mathcal{P} \text{ is convex, union closed and invariant under bounded bisimulation}\}$

Backg 00	ground and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 00000000	Conclusion O	Reference
	Theorem (Aloni,	Anttila, Ya	ng [2023])				
	$\ \mathcal{BSML}^{\vee}\ = \{\text{property } \mathcal{P} \mid \mathcal{P} \text{ is invariant under bounded bisimulation}\}$						
	and						
	$\ \mathcal{BSML}^{\oslash}\ =$	{property	$\mathcal{P} \mid \mathcal{P}$ is union closed and	invariant (under bounded bi	simulation	}

We say that a formula ϕ is *convex* :iff

if
$$t \models \phi, t'' \models \phi$$
 and $t \subseteq t' \subseteq t''$, then $t' \models \phi$.

Theorem (expressive completeness of **BSML**)

 $||\mathcal{BSML}|| = \{ \text{property } \mathcal{P} \mid \mathcal{P} \text{ is convex, union closed and invariant under bounded bisimulation} \}$

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic	Conclusion O	Referenc
Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 00000000	Conclusion O	Reference

 $||\mathcal{BSML}|| = \{\text{property } \mathcal{P} \mid \mathcal{P} \text{ is convex, union closed and invariant under bounded bisimulation}\}$

Proof

'⊆': Bounded bisimulation: ✓ Union closure: ✓

Convexity: By induction, *see blackboard*

' \supseteq ': Let \mathcal{P} be an arbitrary convex, union closed property invariant under k-bisimulation.

- If there is some $(M, \emptyset) \in \mathcal{P}$, then by invariance under k-bisimulation, \mathcal{P} has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find $\phi \in \mathsf{ML} \subseteq \mathsf{BSML}$ s.t. $||\phi|| = \mathcal{P}$.
- If not, take representatives $t_1, ..., t_n$ of k-bis. equivalence classes and consider the following formula: $\varphi_{\mathcal{P}}^k := \bigvee \left(\left\{ NE \land (\chi_{w_1}^k \lor \cdots \lor \chi_{w_n}^k) \mid (w_1, ..., w_n) \in (t_1 × \cdots × t_n) \right\} \right)$

We claim that $\|\varphi_{\mathcal{P}}^k\| = \mathcal{P}$. *See blackboard*

11/24

Background and Motivation Preliminaries 00000 Expressive Completeness of BSML 000	Convexity 00	Convex Team Logic	Conclusion O	Refere
---	-----------------	-------------------	-----------------	--------

 $||\mathcal{BSML}|| = \{\text{property } \mathcal{P} \mid \mathcal{P} \text{ is convex, union closed and invariant under bounded bisimulation}\}$

Proof.

'⊆': Bounded bisimulation: √

Union closure: 🗸

Convexity: By induction, *see blackboard*

' \supseteq ': Let ${\mathcal P}$ be an arbitrary convex, union closed property invariant under k-bisimulation

- If there is some (M, Ø) ∈ P, then by invariance under k-bisimulation, P has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find φ ∈ ML ⊆ BSML s.t. ||φ|| = P.
- If not, take representatives $t_1, ..., t_n$ of k-bis. equivalence classes and consider the following formula: $\varphi_{\mathcal{D}}^k := \bigvee \left(\left\{ NE \land (\chi_{w_n}^k \lor \cdots \lor \chi_{w_n}^k) \mid (w_1, ..., w_n) \in (t_1 \times \cdots \times t_n) \right\} \right)$

We claim that $\|\varphi_{\mathcal{P}}^{k}\| = \mathcal{P}$. *See blackboard*

Background and Motivation Preliminaries 00000 Expressive Completeness of 000	BSML Convexity	Convex Team Logic	Conclusion O	Referen
--	----------------	-------------------	-----------------	---------

 $||\mathcal{BSML}|| = \{ \text{property } \mathcal{P} \mid \mathcal{P} \text{ is convex, union closed and invariant under bounded bisimulation} \}$

Proof.

'⊆': Bounded bisimulation: \checkmark

Union closure: \checkmark

Convexity: By induction, *see blackboard*

' \supseteq ': Let ${\mathcal P}$ be an arbitrary convex, union closed property invariant under k-bisimulation

- If there is some $(M, \emptyset) \in \mathcal{P}$, then by invariance under k-bisimulation, \mathcal{P} has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find $\phi \in ML \subseteq BSML$ s.t. $||\phi|| = \mathcal{P}$.
- If not, take representatives $t_1, ..., t_n$ of k-bis. equivalence classes and consider the following formula: $\varphi_{\mathcal{D}}^k := \bigvee \left(\left\{ NE \land (\chi_{w_n}^k \lor \cdots \lor \chi_{w_n}^k) \mid (w_1, ..., w_n) \in (t_1 × \cdots × t_n) \right\} \right)$

We claim that $\|\varphi_{\mathcal{P}}^{k}\| = \mathcal{P}$. *See blackboard*

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic	Conclusion O	Referenc
Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML 000	Convexity 00	Convex Team Logic 00000000	Conclusion O	Referen

 $||\mathcal{BSML}|| = \{\text{property } \mathcal{P} \mid \mathcal{P} \text{ is convex, union closed and invariant under bounded bisimulation}\}$

Proof.

'⊆': Bounded bisimulation: \checkmark

Union closure: 🗸

Convexity: By induction, *see blackboard*

 \supseteq ': Let $\mathcal P$ be an arbitrary convex, union closed property invariant under k-bisimulation

- If there is some (M, Ø) ∈ P, then by invariance under k-bisimulation, P has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find φ ∈ ML ⊆ BSML s.t. ||φ|| = P.
- If not, take representatives $t_1, ..., t_n$ of k-bis. equivalence classes and consider the following formula: $\varphi_{\mathcal{D}}^k := \bigvee \left(\left\{ NE \land (\chi_{w_n}^k \lor \cdots \lor \chi_{w_n}^k) \mid (w_1, ..., w_n) \in (t_1 \lor \cdots \lor t_n) \right\} \right)$

We claim that $\|\varphi_{\mathcal{P}}^k\| = \mathcal{P}$. *See blackboard*

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic	Conclusion O	Referenc
Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML 000	Convexity 00	Convex Team Logic 00000000	Conclusion O	Referen

 $||\mathcal{BSML}|| = \{\text{property } \mathcal{P} \mid \mathcal{P} \text{ is convex, union closed and invariant under bounded bisimulation}\}$

Proof.

'⊆': Bounded bisimulation: √

Union closure: \checkmark

Convexity: By induction, *see blackboard*

' \supseteq ': Let \mathcal{P} be an arbitrary convex, union closed property invariant under k-bisimulation.

- If there is some (M, Ø) ∈ P, then by invariance under k-bisimulation, P has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find φ ∈ ML ⊆ BSML s.t. ||φ|| = P.
- If not, take representatives $t_1, ..., t_n$ of k-bis. equivalence classes and consider the following formula: $\varphi_{\mathcal{D}}^k := \bigvee \left(\left\{ NE \land (\chi_{w_n}^k \lor \cdots \lor \chi_{w_n}^k) \mid (w_1, ..., w_n) \in (t_1 × \cdots × t_n) \right\} \right)$

We claim that $\|\varphi_{\mathcal{P}}^{k}\| = \mathcal{P}$. *See blackboard*

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 00000000	Conclusion O	Referenc
Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML 000	Convexity 00	Convex Team Logic 00000000	Conclusion O	Reference

 $||\mathcal{BSML}|| = \{\text{property } \mathcal{P} \mid \mathcal{P} \text{ is convex, union closed and invariant under bounded bisimulation}\}$

Proof.

'⊆': Bounded bisimulation: √

Union closure: \checkmark

Convexity: By induction, *see blackboard*

' \supseteq ': Let \mathcal{P} be an arbitrary convex, union closed property invariant under k-bisimulation.

- If there is some (M,Ø) ∈ P, then by invariance under k-bisimulation, P has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find φ ∈ ML ⊆ BSML s.t. ||φ|| = P.
- If not, take representatives $t_1, ..., t_n$ of k-bis. equivalence classes and consider the following formula: $\varphi_{\mathcal{D}}^k := \bigvee \left(\left\{ NE \land (\chi_{w_n}^k \lor \cdots \lor \chi_{w_n}^k) \mid (w_1, ..., w_n) \in (t_1 \lor \cdots \lor t_n) \right\} \right)$

We claim that $\|\varphi_{\mathcal{P}}^k\| = \mathcal{P}$. *See blackboard*

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic	Conclusion O	Referenc
Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML 000	Convexity 00	Convex Team Logic 00000000	Conclusion O	Reference

 $||\mathcal{BSML}|| = \{\text{property } \mathcal{P} \mid \mathcal{P} \text{ is convex, union closed and invariant under bounded bisimulation}\}$

Proof.

'⊆': Bounded bisimulation: \checkmark

Union closure: 🗸

Convexity: By induction, *see blackboard*

' \supseteq ': Let \mathcal{P} be an arbitrary convex, union closed property invariant under k-bisimulation.

- If there is some (M,Ø) ∈ P, then by invariance under k-bisimulation, P has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find φ ∈ ML ⊆ BSML s.t. ||φ|| = P.
- If not, take representatives $t_1, ..., t_n$ of k-bis. equivalence classes and consider the following formula: $\varphi_{\mathcal{P}}^k := \bigvee \left(\left\{ NE \land (\chi_{w_n}^k \lor \cdots \lor \chi_{w_n}^k) \mid (w_1, ..., w_n) \in (t_1 \lor \cdots \lor t_n) \right\} \right)$

We claim that $\|\varphi_{\mathcal{P}}^{k}\| = \mathcal{P}$. *See blackboard*
Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic	Conclusion O	Referenc
Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML 000	Convexity 00	Convex Team Logic 00000000	Conclusion O	Reference

 $||\mathcal{BSML}|| = \{\text{property } \mathcal{P} \mid \mathcal{P} \text{ is convex, union closed and invariant under bounded bisimulation}\}$

Proof.

'⊆': Bounded bisimulation: \checkmark

Union closure: 🗸

Convexity: By induction, *see blackboard*

' \supseteq ': Let \mathcal{P} be an arbitrary convex, union closed property invariant under k-bisimulation.

- If there is some (M, Ø) ∈ P, then by invariance under k-bisimulation, P has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find φ ∈ ML ⊆ BSML s.t. ||φ|| = P.
- If not, take representatives $t_1, ..., t_n$ of k-bis. equivalence classes and consider the following formula: $\varphi_{\mathcal{P}}^k := \bigvee \left(\left\{ NE \land (\chi_{w_1}^k \lor \cdots \lor \chi_{w_n}^k) \mid (w_1, ..., w_n) \in (t_1 \lor \cdots \lor t_n) \right\} \right)$

We claim that $\|\varphi_{\mathcal{P}}^k\| = \mathcal{P}$. *See blackboard*

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic	Conclusion O	Referenc
Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML 000	Convexity 00	Convex Team Logic 00000000	Conclusion O	Reference

 $||\mathcal{BSML}|| = \{\text{property } \mathcal{P} \mid \mathcal{P} \text{ is convex, union closed and invariant under bounded bisimulation}\}$

Proof.

'⊆': Bounded bisimulation: \checkmark

Union closure: \checkmark

Convexity: By induction, *see blackboard*

' \supseteq ': Let \mathcal{P} be an arbitrary convex, union closed property invariant under k-bisimulation.

- If there is some (M, Ø) ∈ P, then by invariance under k-bisimulation, P has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find φ ∈ ML ⊆ BSML s.t. ||φ|| = P.

We claim that $\|\varphi_{\mathcal{P}}^{\kappa}\| = \mathcal{P}$. *See blackboard*

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic	Conclusion O	Referenc
Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML 000	Convexity 00	Convex Team Logic 00000000	Conclusion O	Reference

 $||\mathcal{BSML}|| = \{\text{property } \mathcal{P} \mid \mathcal{P} \text{ is convex, union closed and invariant under bounded bisimulation}\}$

Proof.

'⊆': Bounded bisimulation: \checkmark

Union closure: \checkmark

Convexity: By induction, *see blackboard*

' \supseteq ': Let \mathcal{P} be an arbitrary convex, union closed property invariant under k-bisimulation.

- If there is some (M, Ø) ∈ P, then by invariance under k-bisimulation, P has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find φ ∈ ML ⊆ BSML s.t. ||φ|| = P.
- If not, take representatives $t_1, ..., t_n$ of k-bis. equivalence classes and consider the following formula: $\varphi_{\mathcal{P}}^k := \bigvee \left(\left\{ NE \land (\chi_{w_1}^k \lor \cdots \lor \chi_{w_n}^k) \mid (w_1, ..., w_n) \in (t_1 × \cdots × t_n) \right\} \right)$

We claim that $\|\varphi_{\mathcal{P}}^{\kappa}\| = \mathcal{P}$. *See blackboard*

11/24

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic	Conclusion O	Referenc
Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML 000	Convexity 00	Convex Team Logic 00000000	Conclusion O	Reference

 $||\mathcal{BSML}|| = \{\text{property } \mathcal{P} \mid \mathcal{P} \text{ is convex, union closed and invariant under bounded bisimulation}\}$

Proof.

'⊆': Bounded bisimulation: \checkmark

Union closure: \checkmark

Convexity: By induction, *see blackboard*

' \supseteq ': Let \mathcal{P} be an arbitrary convex, union closed property invariant under k-bisimulation.

- If there is some (M, Ø) ∈ P, then by invariance under k-bisimulation, P has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find φ ∈ ML ⊆ BSML s.t. ||φ|| = P.
- If not, take representatives $t_1, ..., t_n$ of k-bis. equivalence classes and consider the following formula: $\varphi_{\mathcal{P}}^k := \bigvee \left(\left\{ NE \land (\chi_{w_1}^k \lor \cdots \lor \chi_{w_n}^k) \mid (w_1, ..., w_n) \in (t_1 × \cdots × t_n) \right\} \right)$

We claim that $\|\varphi_{\mathcal{P}}^k\| = \mathcal{P}$. *See blackboard*

11/24

- We have shown that BSML is expressively complete for all convex, union-closed properties.
- We have obtained a normal form for ${f BSML}$ -formulas $\phi_{f }$ namely of the form

$$\varphi_{\mathcal{P}}^{k} \coloneqq \bigvee \left(\left\{ NE \land \left(\chi_{w_{1}}^{k} \lor \cdots \lor \chi_{w_{n}}^{k} \right) \mid \left(w_{1}, ..., w_{n} \right) \in \left(t_{1} \times \cdots \times t_{n} \right) \right\} \right)$$

- Or, in fact, equivalently:

$$\bigvee_{t\in\mathcal{P}}\chi_t^k\wedge\bigwedge\{((\chi_{w_1}^k\vee\chi_{w_2}^k\vee\ldots\vee\chi_{w_n}^k)\wedge\operatorname{NE})\vee\pi\mid(w_1,\ldots,w_n)\in(t_1\times\cdots\times t_n)\},$$

where the former conjunct is *flat* and the latter is *upwards closed*.

- We have shown that BSML is expressively complete for all convex, union-closed properties.
- We have obtained a normal form for $\textbf{BSML}\textsc{-}formulas \ensuremath{\phi}\xspace$, namely of the form

$$\varphi_{\mathcal{P}}^{k} \coloneqq \bigvee \left(\left\{ \mathsf{NE} \land (\chi_{w_{1}}^{k} \lor \cdots \lor \chi_{w_{n}}^{k}) \mid (w_{1}, ..., w_{n}) \in (t_{1} \times \cdots \times t_{n}) \right\} \right)$$

- Or, in fact, equivalently:

$$\bigvee_{t\in\mathcal{P}}\chi_t^k\wedge\bigwedge\{((\chi_{w_1}^k\vee\chi_{w_2}^k\vee\ldots\vee\chi_{w_n}^k)\wedge\operatorname{NE})\vee\top\mid(w_1,\ldots,w_n)\in(t_1\times\cdots\times t_n)\},$$

where the former conjunct is *flat* and the latter is *upwards closed*.

- We have shown that BSML is expressively complete for all convex, union-closed properties.
- We have obtained a normal form for **BSML**-formulas ϕ , namely of the form

$$\varphi_{\mathcal{P}}^{k} \coloneqq \bigvee \left(\left\{ \mathsf{NE} \land (\chi_{w_{1}}^{k} \lor \cdots \lor \chi_{w_{n}}^{k}) \mid (w_{1}, ..., w_{n}) \in (t_{1} \times \cdots \times t_{n}) \right\} \right)$$

- Or, in fact, equivalently:

$$\bigvee_{t\in\mathcal{P}}\chi_t^k\wedge\bigwedge\{((\chi_{w_1}^k\vee\chi_{w_2}^k\vee\ldots\vee\chi_{w_n}^k)\wedge\operatorname{NE})\vee \mathbb{T}\mid (w_1,...,w_n)\in(t_1\times\cdots\times t_n)\}$$

where the former conjunct is *flat* and the latter is *upwards closed*.

Background and Motivation Preliminaries Expressive Completenes	of BSML Convexity Convex Te: •0 0000000	m Logic Conclusion References
--	--	-------------------------------

Updated picture:

	Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity ●0	Convex Team Logic	Conclusion O	References
--	---------------------------	------------------------	---------------------------------	-----------------	-------------------	-----------------	------------

Updated picture:

Updated picture:

What logic is expressively complete for convex properties (without the empty team property)? Note:

 ϕ is convex and has the empty team property \iff

 $\boldsymbol{\phi}$ is downward closed and has the empty team property

So $ML(=(\cdot))$ is expressively complete for convex properties with the empty team property = 3 < c 13/24

Background and Motivation 00	Preliminaries 00000	Expressive Completeness of BSML	Convexity ⊙●	Convex Team Logic 00000000	Conclusion O	References

Examples of convex sentences/formulas which are not union closed:

Between five and ten bananas are yellow. $(q \lor \neg q) \land ((r \land NE) \lor T)$ (where $T := (p \lor \neg p)$

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic •0000000	Conclusion O	References
---------------------------	------------------------	---------------------------------	-----------------	-------------------------------	-----------------	------------

Recall the following characteristic formulas for convex union-closed properties:

If
$$\mathcal{P} \neq \emptyset$$
:
which we may write:

$$\bigvee_{s \in \mathcal{P}} \chi_s^k \wedge \bigwedge \{ ((\chi_{w_1}^k \lor \chi_{w_2}^k \lor \ldots \lor \chi_n^k) \land \operatorname{NE}) \lor \mathbb{T} \mid (w_1, ..., w_n) \in (s_1 \times \cdots \times s_n) \}$$

$$\bigvee_{s \in \mathcal{P}} \chi_s^k \wedge \bigwedge_{u \in \prod \mathcal{P}} ((\chi_u^k \land \operatorname{NE}) \lor \mathbb{T})$$
If $\mathcal{P} = \emptyset$:

$$\bot \land \operatorname{NE}$$

where $\mathcal{P} \rightleftharpoons_k \{s_1, \ldots, s_n\}$. The first conjunct in the non-empty characteristic formula is a characteristic formula for flat properties, and the second for upward-closed properties.

Background and Motivation 00	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic ●0000000	Conclusion O	References
---------------------------------	------------------------	---------------------------------	-----------------	-------------------------------	-----------------	------------

Recall the following characteristic formulas for convex union-closed properties:

If
$$\mathcal{P} \neq \emptyset$$
:
which we may write:

$$\bigvee_{s \in \mathcal{P}} \chi_s^k \wedge \bigwedge \{ ((\chi_{w_1}^k \lor \chi_{w_2}^k \lor \ldots \lor \chi_n^k) \land \operatorname{NE}) \lor \mathbb{T} \mid (w_1, ..., w_n) \in (s_1 \times \cdots \times s_n) \}$$

$$\bigvee_{s \in \mathcal{P}} \chi_s^k \wedge \bigwedge_{u \in \prod \mathcal{P}} ((\chi_u^k \land \operatorname{NE}) \lor \mathbb{T})$$
If $\mathcal{P} = \emptyset$:

$$\bot \land \operatorname{NE}$$

where $\mathcal{P} \rightleftharpoons_k \{s_1, \ldots, s_n\}$. The first conjunct in the non-empty characteristic formula is a characteristic formula for flat properties, and the second for upward-closed properties.

To get a characteristic formula for (non-empty) convex properties, simply replace the first conjunct with a characteristic formula for downward-closed properties:

$$\bigvee_{s\in\mathcal{P}}\chi_s^k\wedge\bigwedge_{u\in\prod\mathcal{P}}((\chi_u^k\wedge\mathrm{NE})\vee\pi)$$

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic o●oooooo	Conclusion O	Reference

For any non-empty convex \mathcal{P} invariant under \rightleftharpoons_k :

$$t \in \mathcal{P} \iff t \models \bigvee_{s \in \mathcal{P}} \chi_s^k \wedge \bigwedge_{u \in \prod \mathcal{P}} ((\chi_u^k \wedge \operatorname{NE}) \lor \mathbb{T})$$

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 0●000000	Conclusion O	Reference

For any non-empty convex \mathcal{P} invariant under \rightleftharpoons_k :

$$t \in \mathcal{P} \iff t \models \bigvee_{s \in \mathcal{P}} \chi_s^k \wedge \bigwedge_{u \in \prod \mathcal{P}} ((\chi_u^k \wedge \operatorname{NE}) \lor \mathbb{T})$$

Proof.

 \implies : Clearly $t \models \chi_t^k$ so $t \models \bigvee_{s \in \mathcal{P}} \chi_s^k$.

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 0●000000	Conclusion O	Reference

For any non-empty convex \mathcal{P} invariant under \rightleftharpoons_k :

$$t \in \mathcal{P} \iff t \models \bigvee_{s \in \mathcal{P}} \chi_s^k \wedge \bigwedge_{u \in \prod \mathcal{P}} ((\chi_u^k \wedge \operatorname{NE}) \lor \mathbb{T})$$

Proof.

 $\implies: \text{Clearly } t \models \chi_t^k \text{ so } t \models \bigvee_{s \in \mathcal{P}} \chi_s^k. \text{ If } \mathcal{P} \text{ has the empty team property, } \prod \mathcal{P} = \emptyset \text{ so the second conjunct is } \pi \text{ and we are done. Otherwise let } u \in \prod \mathcal{P}. \text{ For some } w \in u \text{ we have } w \in t, \text{ so } t \models (\chi_w^k \land \text{NE}) \lor \pi. \text{ Therefore also } t \models ((\chi_w \lor \bigvee_{v \in u \setminus \{w\}} \chi_v^k) \land \text{NE}) \lor \pi \text{ whence } t \models (\chi_u^k \land \text{NE}) \lor \pi.$

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 0●000000	Conclusion O	Reference

For any non-empty convex \mathcal{P} invariant under \rightleftharpoons_k :

$$t \in \mathcal{P} \iff t \models \bigvee_{s \in \mathcal{P}} \chi_s^k \wedge \bigwedge_{u \in \prod \mathcal{P}} ((\chi_u^k \wedge \operatorname{NE}) \lor \mathbb{T})$$

Proof.

 $\implies: \text{Clearly } t \models \chi_t^k \text{ so } t \models \bigvee_{s \in \mathcal{P}} \chi_s^k. \text{ If } \mathcal{P} \text{ has the empty team property, } \prod \mathcal{P} = \emptyset \text{ so the second conjunct is } \pi \text{ and we are done. Otherwise let } u \in \prod \mathcal{P}. \text{ For some } w \in u \text{ we have } w \in t, \text{ so } t \models (\chi_w^k \land \text{NE}) \lor \pi. \text{ Therefore also } t \models ((\chi_w \lor \bigvee_{v \in u} \setminus_{\{w\}}^k \chi_v^k) \land \text{NE}) \lor \pi \text{ whence } t \models (\chi_u^k \land \text{NE}) \lor \pi.$

$$\iff: \text{ By } t \models \bigvee_{s \in \mathcal{P}} \chi_s^k \text{ there is some } s \in \mathcal{P} \text{ s.t. } t \rightleftharpoons_k s' \subseteq s.$$

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 0●000000	Conclusion O	Reference

For any non-empty convex \mathcal{P} invariant under \rightleftharpoons_k :

$$t \in \mathcal{P} \iff t \models \bigvee_{s \in \mathcal{P}} \chi_s^k \wedge \bigwedge_{u \in \prod \mathcal{P}} ((\chi_u^k \wedge \operatorname{NE}) \lor \mathbb{T})$$

Proof.

 $\implies: \text{ Clearly } t \models \chi_t^k \text{ so } t \models \bigvee_{s \in \mathcal{P}} \chi_s^k. \text{ If } \mathcal{P} \text{ has the empty team property, } \prod \mathcal{P} = \emptyset \text{ so the second conjunct is } \pi \text{ and we are done. Otherwise let } u \in \prod \mathcal{P}. \text{ For some } w \in u \text{ we have } w \in t, \text{ so } t \models (\chi_w^k \land \text{NE}) \lor \pi. \text{ Therefore also } t \models ((\chi_w \lor \bigvee_{v \in u \setminus \{w\}} \chi_v^k) \land \text{NE}) \lor \pi \text{ whence } t \models (\chi_u^k \land \text{NE}) \lor \pi.$

 $\begin{array}{l} \longleftarrow: \text{ By } t \models \bigvee_{s \in \mathcal{P}} \chi_s^k \text{ there is some } s \in \mathcal{P} \text{ s.t. } t \rightleftharpoons_k s' \subseteq s. \\ \text{Claim: by } t \models \bigwedge_{u \in \Pi} \mathcal{P}((\chi_u^k \wedge \text{NE}) \lor \pi) \text{ there is some } y \in \mathcal{P} \text{ s.t. } y \rightleftharpoons_k t' \subseteq t. \text{ Assume for contradiction that } \\ \forall s \in \mathcal{P} : \exists w_s \in s : \nexists v \in t : w_s \rightleftharpoons_k v \text{ (i.e., } \forall s \in \mathcal{P} : s \notin t, \text{ in modal terms).} \end{array}$

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 0●000000	Conclusion O	Reference

For any non-empty convex \mathcal{P} invariant under \rightleftharpoons_k :

$$t \in \mathcal{P} \iff t \models \bigvee_{s \in \mathcal{P}} \chi_s^k \wedge \bigwedge_{u \in \prod \mathcal{P}} ((\chi_u^k \wedge \operatorname{NE}) \lor \mathbb{T})$$

Proof.

 $\implies: \text{ Clearly } t \models \chi_t^k \text{ so } t \models \bigvee_{s \in \mathcal{P}} \chi_s^k. \text{ If } \mathcal{P} \text{ has the empty team property, } \prod \mathcal{P} = \emptyset \text{ so the second conjunct is } \pi \text{ and we are done. Otherwise let } u \in \prod \mathcal{P}. \text{ For some } w \in u \text{ we have } w \in t, \text{ so } t \models (\chi_w^k \land \text{NE}) \lor \pi. \text{ Therefore also } t \models ((\chi_w \lor \bigvee_{v \in u \setminus \{w\}} \chi_v^k) \land \text{NE}) \lor \pi \text{ whence } t \models (\chi_u^k \land \text{NE}) \lor \pi.$

 $\stackrel{\longleftarrow}{\longleftarrow} : \text{By } t \models \bigvee_{s \in \mathcal{P}} \chi_s^k \text{ there is some } s \in \mathcal{P} \text{ s.t. } t \rightleftharpoons_k s' \subseteq s.$ Claim: by $t \models \bigwedge_{u \in \prod \mathcal{P}} ((\chi_u^k \land \text{NE}) \lor \pi) \text{ there is some } y \in \mathcal{P} \text{ s.t. } y \rightleftharpoons_k t' \subseteq t. \text{ Assume for contradiction that } \forall s \in \mathcal{P} : \exists w_s \in s : \nexists v \in t : w_s \rightleftharpoons_k v \text{ (i.e., } \forall s \in \mathcal{P} : s \notin t, \text{ in modal terms}). \text{ Then } \{w_s \mid s \in \mathcal{P}\} \in \prod \mathcal{P} \text{ so } t \models ((\bigvee_{\{w_s \mid s \in \mathcal{P}\}} \chi_{w_s}^k) \land \text{NE}) \lor \pi.$

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 0●000000	Conclusion O	Reference

For any non-empty convex \mathcal{P} invariant under \rightleftharpoons_k :

$$t \in \mathcal{P} \iff t \models \bigvee_{s \in \mathcal{P}} \chi_s^k \wedge \bigwedge_{u \in \prod \mathcal{P}} ((\chi_u^k \wedge \operatorname{NE}) \lor \mathbb{T})$$

Proof.

 $\implies: \text{ Clearly } t \models \chi_t^k \text{ so } t \models \bigvee_{s \in \mathcal{P}} \chi_s^k. \text{ If } \mathcal{P} \text{ has the empty team property, } \prod \mathcal{P} = \emptyset \text{ so the second conjunct is } \pi \text{ and we are done. Otherwise let } u \in \prod \mathcal{P}. \text{ For some } w \in u \text{ we have } w \in t, \text{ so } t \models (\chi_w^k \land \text{NE}) \lor \pi. \text{ Therefore also } t \models ((\chi_w \lor \bigvee_{v \in u \setminus \{w\}} \chi_v^k) \land \text{NE}) \lor \pi \text{ whence } t \models (\chi_u^k \land \text{NE}) \lor \pi.$

 $\begin{array}{l} \longleftarrow : \text{ By } t \models \bigvee_{s \in \mathcal{P}} \chi_s^k \text{ there is some } s \in \mathcal{P} \text{ s.t. } t \rightleftharpoons_k s' \subseteq s. \\ \text{Claim: by } t \models \bigwedge_{u \in \prod \mathcal{P}} ((\chi_u^k \land \text{NE}) \lor \pi) \text{ there is some } y \in \mathcal{P} \text{ s.t. } y \rightleftharpoons_k t' \subseteq t. \text{ Assume for contradiction that } \\ \forall s \in \mathcal{P} : \exists w_s \in s : \nexists v \in t : w_s \rightleftharpoons_k v \text{ (i.e., } \forall s \in \mathcal{P} : s \notin t, \text{ in modal terms}). \text{ Then } \{w_s \mid s \in \mathcal{P}\} \in \prod \mathcal{P} \text{ so } \\ t \models ((\bigvee_{\{w_s \mid s \in \mathcal{P}\}} \chi_{w_s}^k) \land \text{NE}) \lor \pi. \text{ But then for some } s \in \mathcal{P} \text{ we have } t \models (\chi_{w_s}^k \land \text{NE}) \lor \pi \text{ so for some } \\ v \in t : w \rightleftharpoons_k v, \text{ a contradiction.} \end{array}$

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 0●000000	Conclusion O	Reference

For any non-empty convex \mathcal{P} invariant under \rightleftharpoons_k :

$$t \in \mathcal{P} \iff t \models \bigvee_{s \in \mathcal{P}} \chi_s^k \wedge \bigwedge_{u \in \prod \mathcal{P}} ((\chi_u^k \wedge \operatorname{NE}) \lor \mathbb{T})$$

Proof.

 $\implies: \text{ Clearly } t \models \chi_t^k \text{ so } t \models \bigvee_{s \in \mathcal{P}} \chi_s^k. \text{ If } \mathcal{P} \text{ has the empty team property, } \prod \mathcal{P} = \emptyset \text{ so the second conjunct is } \pi \text{ and we are done. Otherwise let } u \in \prod \mathcal{P}. \text{ For some } w \in u \text{ we have } w \in t, \text{ so } t \models (\chi_w^k \land \text{NE}) \lor \pi. \text{ Therefore also } t \models ((\chi_w \lor \bigvee_{v \in u \setminus \{w\}} \chi_v^k) \land \text{NE}) \lor \pi \text{ whence } t \models (\chi_u^k \land \text{NE}) \lor \pi.$

 $\begin{array}{l} \longleftarrow : \text{By } t \models \bigvee_{s \in \mathcal{P}} \chi_s^k \text{ there is some } s \in \mathcal{P} \text{ s.t. } t \rightleftharpoons_k s' \subseteq s. \\ \text{Claim: by } t \models \bigwedge_{u \in \prod \mathcal{P}} ((\chi_u^k \land \text{NE}) \lor \mathbb{T}) \text{ there is some } y \in \mathcal{P} \text{ s.t. } y \rightleftharpoons_k t' \subseteq t. \text{ Assume for contradiction that} \\ \forall s \in \mathcal{P} : \exists w_s \in s : \nexists v \in t : w_s \rightleftharpoons_k v \text{ (i.e., } \forall s \in \mathcal{P} : s \notin t, \text{ in modal terms}). \text{ Then } \{w_s \mid s \in \mathcal{P}\} \in \prod \mathcal{P} \text{ so} \\ t \models ((\bigvee_{\{w_s \mid s \in \mathcal{P}\}} \chi_{w_s}^k) \land \text{NE}) \lor \mathbb{T}. \text{ But then for some } s \in \mathcal{P} \text{ we have } t \models (\chi_{w_s}^k \land \text{NE}) \lor \mathbb{T} \text{ so for some} \\ v \in t : w \rightleftharpoons_k v, \text{ a contradiction. So for some } y \in \mathcal{P} \text{ we must have } \forall w \in y : \exists v \in t : w \rightleftharpoons_k v, \text{ i.e., } y \rightleftharpoons_k t' \subseteq t. \end{array}$

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic ○●○○○○○○	Conclusion O	Reference

For any non-empty convex \mathcal{P} invariant under \rightleftharpoons_k :

$$t \in \mathcal{P} \iff t \models \bigvee_{s \in \mathcal{P}} \chi_s^k \wedge \bigwedge_{u \in \prod \mathcal{P}} ((\chi_u^k \wedge \operatorname{NE}) \lor \mathbb{T})$$

Proof.

 $\implies: \text{ Clearly } t \models \chi_t^k \text{ so } t \models \bigvee_{s \in \mathcal{P}} \chi_s^k. \text{ If } \mathcal{P} \text{ has the empty team property, } \prod \mathcal{P} = \emptyset \text{ so the second conjunct is } \pi \text{ and we are done. Otherwise let } u \in \prod \mathcal{P}. \text{ For some } w \in u \text{ we have } w \in t, \text{ so } t \models (\chi_w^k \land \text{NE}) \lor \pi. \text{ Therefore also } t \models ((\chi_w \lor \bigvee_{v \in u \setminus \{w\}} \chi_v^k) \land \text{NE}) \lor \pi \text{ whence } t \models (\chi_u^k \land \text{NE}) \lor \pi.$

 $\begin{array}{l} \displaystyle \xleftarrow{} & \text{By } t \models \bigvee_{s \in \mathcal{P}} \chi_s^k \text{ there is some } s \in \mathcal{P} \text{ s.t. } t \rightleftharpoons_k s' \subseteq s. \\ \text{Claim: by } t \models \bigwedge_{u \in \prod \mathcal{P}} ((\chi_u^k \land \text{NE}) \lor \pi) \text{ there is some } y \in \mathcal{P} \text{ s.t. } y \rightleftharpoons_k t' \subseteq t. \text{ Assume for contradiction that} \\ \forall s \in \mathcal{P} : \exists w_s \in s \not\exists v \in t : w_s \rightleftharpoons_k v \text{ (i.e., } \forall s \in \mathcal{P} : s \notin t, \text{ in modal terms}). \text{ Then } \{w_s \mid s \in \mathcal{P}\} \in \prod \mathcal{P} \text{ so} \\ t \models ((\bigvee_{\{w_s \mid s \in \mathcal{P}\}} \chi_{w_s}^k) \land \text{NE}) \lor \pi. \text{ But then for some } s \in \mathcal{P} \text{ we have } t \models (\chi_{w_s}^k \land \text{NE}) \lor \pi \text{ so for some} \\ v \in t : w \rightleftharpoons_k v, \text{ a contradiction. So for some } y \in \mathcal{P} \text{ we must have } \forall w \in y : \exists v \in t : w \rightleftharpoons_k v, \text{ i.e., } y \rightleftharpoons_k t' \subseteq t. \\ \text{By } \rightleftharpoons_k \text{-invariance, } t' \in \mathcal{P}. t' \subseteq t \rightleftharpoons_k s', \text{ so } t' \rightleftharpoons_k s'' \subseteq s' \text{ whence } s'' \in \mathcal{P} \text{ by } \rightleftharpoons_k \text{-invariance. } s'' \subseteq s' \subseteq s \in \mathcal{P} \text{ so} \\ s' \in \mathcal{P} \text{ by convexity. Then } t \in \mathcal{P} \text{ by } \rightleftharpoons_k \text{-invariance.} \end{array}$

Background and Motivation Prel	eliminaries Expressive	Completeness of BSML Co	onvexity Con	ovex Team Logic (●000000	Conclusion O	References
--------------------------------	------------------------	-------------------------	--------------	------------------------------	-----------------	------------

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 00€00000	Conclusion O	References
---------------------------	------------------------	---------------------------------	-----------------	-------------------------------	-----------------	------------

This is not surprising given ML(NE, W) is complete for all properties, but there is a more general issue with the tensor disjunction: if ϕ or ψ is not union closed, $\phi \lor \psi$ might not be convex:

Fact

If a logic can express all convex properties and has the connective \lor , it is not convex.

Recall the intuitionistic implication \rightarrow :

$$s \models \phi \rightarrow \psi \iff \forall t \subseteq s : t \models \phi \text{ implies } t \models \psi$$

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 00€00000	Conclusion O	References
---------------------------	------------------------	---------------------------------	-----------------	-------------------------------	-----------------	------------

This is not surprising given ML(NE, W) is complete for all properties, but there is a more general issue with the tensor disjunction: if ϕ or ψ is not union closed, $\phi \lor \psi$ might not be convex:

Fact

If a logic can express all convex properties and has the connective \lor , it is not convex.

Recall the intuitionistic implication \rightarrow :

$$s \models \phi \rightarrow \psi \iff \forall t \subseteq s : t \models \phi \text{ implies } t \models \psi$$

Consider $\psi := (((p \land NE) \lor (\neg p \land NE)) \rightarrow q) \land ((r \land NE) \lor \pi)$. It is easy to see that $||\psi||$ is convex (the first conjunct is downward closed; the second, upward closed) and not union closed.

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 00€00000	Conclusion O	References
---------------------------	------------------------	---------------------------------	-----------------	-------------------------------	-----------------	------------

This is not surprising given ML(NE, W) is complete for all properties, but there is a more general issue with the tensor disjunction: if ϕ or ψ is not union closed, $\phi \lor \psi$ might not be convex:

Fact

If a logic can express all convex properties and has the connective \lor , it is not convex.

Recall the intuitionistic implication \rightarrow :

$$s \models \phi \rightarrow \psi \iff \forall t \subseteq s : t \models \phi \text{ implies } t \models \psi$$

Consider $\psi := (((p \land NE) \lor (\neg p \land NE)) \rightarrow q) \land ((r \land NE) \lor \pi)$. It is easy to see that $||\psi||$ is convex (the first conjunct is downward closed; the second, upward closed) and not union closed. Let $\phi := \psi \lor \psi$. We show ϕ is not convex.

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 00€00000	Conclusion O	References
---------------------------	------------------------	---------------------------------	-----------------	-------------------------------	-----------------	------------

This is not surprising given ML(NE, W) is complete for all properties, but there is a more general issue with the tensor disjunction: if ϕ or ψ is not union closed, $\phi \lor \psi$ might not be convex:

Fact

If a logic can express all convex properties and has the connective \lor , it is not convex.

Recall the intuitionistic implication \rightarrow :

$$s \models \phi \rightarrow \psi \iff \forall t \subseteq s : t \models \phi \text{ implies } t \models \psi$$

Consider $\psi := (((p \land NE) \lor (\neg p \land NE)) \rightarrow q) \land ((r \land NE) \lor \pi)$. It is easy to see that $||\psi||$ is convex (the first conjunct is downward closed; the second, upward closed) and not union closed. Let $\phi := \psi \lor \psi$. We show ϕ is not convex. Let $t := \{w_p, w_{pr}, w_{\emptyset}, w_r\}$. Then $\{w_p, w_{pr}\} \models \psi$ and $\{w, w_r\} \models \psi$ so $t \models \phi$. Clearly also $\{w_r\} \models \phi$. But $\{w_r, w_p\} \not\models \phi$ because $\{w_r\}$ is the only substate that makes ψ true.

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 000€0000	Conclusion O	References
---------------------------	------------------------	---------------------------------	-----------------	-------------------------------	-----------------	------------

Syntax of classical modal logic with \rightarrow **ML**_{\rightarrow}:

 $\alpha \coloneqq p \mid \bot \mid \alpha \land \alpha \mid \alpha \to \alpha \mid \diamondsuit \alpha$

Syntax of modal convex team logic **MC**:

 $\phi \coloneqq p \mid \bot \mid \phi \land \phi \mid \phi \to \phi \mid \diamondsuit \phi \mid \nabla \phi$

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ の へ · 18/24

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 000€0000	Conclusion O	References
---------------------------	------------------------	---------------------------------	-----------------	-------------------------------	-----------------	------------

Syntax of classical modal logic with \rightarrow **ML**_{\rightarrow}:

 $\alpha ::= \boldsymbol{p} \mid \bot \mid \alpha \land \alpha \mid \alpha \to \alpha \mid \diamondsuit \alpha$

Syntax of modal convex team logic **MC**:

$$\phi \coloneqq p \mid \bot \mid \phi \land \phi \mid \phi \to \phi \mid \diamondsuit \phi \mid \nabla \phi$$

 ∇ is the "epistemic might" operator which has been used to formalize epistemic contradictions:

$$s \models \nabla \phi \iff \exists t \subseteq s : t \neq \emptyset \text{ and } t \models \phi$$

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 000€0000	Conclusion O	References
---------------------------	------------------------	---------------------------------	-----------------	-------------------------------	-----------------	------------

Syntax of classical modal logic with \rightarrow **ML**_{\rightarrow}:

 $\alpha ::= \boldsymbol{p} \mid \bot \mid \alpha \land \alpha \mid \alpha \to \alpha \mid \diamondsuit \alpha$

Syntax of modal convex team logic **MC**:

$$\phi ::= p \mid \bot \mid \phi \land \phi \mid \phi \to \phi \mid \diamondsuit \phi \mid \nabla \phi$$

 ∇ is the "epistemic might" operator which has been used to formalize epistemic contradictions:

 $s \models \nabla \phi \iff \exists t \subseteq s : t \neq \emptyset \text{ and } t \models \phi$

Epistemic contradiction: #It is raining but it might not be raining. Formalized as: $r \land \nabla \neg r$. Contradiction: $r \land \nabla \neg r \models \bot$.

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 000€0000	Conclusion O	References
---------------------------	------------------------	---------------------------------	-----------------	-------------------------------	-----------------	------------

Syntax of classical modal logic with \rightarrow **ML**_{\rightarrow}:

 $\alpha \coloneqq p \mid \bot \mid \alpha \land \alpha \mid \alpha \to \alpha \mid \diamondsuit \alpha$

Syntax of modal convex team logic **MC**:

$$\phi \coloneqq p \mid \bot \mid \phi \land \phi \mid \phi \to \phi \mid \diamondsuit \phi \mid \nabla \phi$$

 ∇ is the "epistemic might" operator which has been used to formalize epistemic contradictions:

 $s \models \nabla \phi \iff \exists t \subseteq s : t \neq \emptyset \text{ and } t \models \phi$

Epistemic contradiction: #It is raining but it might not be raining. Formalized as: $r \land \nabla \neg r$. Contradiction: $r \land \nabla \neg r \models \bot$.

Note that $\nabla \phi \equiv (\phi \wedge \text{NE}) \vee \pi$ and that $\text{NE} \equiv \nabla \pi$.

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 0000€000	Conclusion O	Reference

MC is convex.

Proof.

 p, \perp and $\Diamond \phi$ are flat and hence convex. $\phi \rightarrow \phi$ is downward closed and hence convex. $\nabla \phi$ is upward closed and hence convex. The conjunction case follows immediately from the induction hypothesis.

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 0000●000	Conclusion O	Referenc

MC is convex.

Proof.

 p, \perp and $\Diamond \phi$ are flat and hence convex. $\phi \rightarrow \phi$ is downward closed and hence convex. $\nabla \phi$ is upward closed and hence convex. The conjunction case follows immediately from the induction hypothesis.

By the foregoing, if **MC** can express the empty property, all upward-closed properties, and all downward-closed properties, it can express all convex properties.

MC can express the empty property since $t \in \mathcal{P} \iff t \models \nabla \bot$.

MC can express all upward-closed properties since

$$\bigwedge_{u\in\Pi\mathcal{P}}((\chi_u^k\wedge \mathrm{NE})\vee \mathbb{T})\equiv \bigwedge_{u\in\Pi\mathcal{P}}\nabla\chi_u^k$$

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 00000€00	Conclusion 0	References
---------------------------	------------------------	---------------------------------	-----------------	-------------------------------	-----------------	------------

To show **MC** can express all downward-closed properties, we show that the global disjunction is definable for classical formulas. For $\{\alpha\}_{i \in I} \subseteq \mathbf{ML}_{\rightarrow}$ define:

$$\bigvee_{i \in I} \alpha_i \coloneqq \bigwedge_{i \in I} \left(\left(\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j \right) \to \alpha_i \right) \qquad \mathsf{E.g.}, \ \alpha \lor \beta = \left(\nabla \neg \alpha \to \alpha \right) \land \left(\nabla \neg \beta \to \beta \right)$$

Background and Motivation October Preliminaries Expressive Completeness of BSML Convexity October Conclusion Research Convexity October Co	ferences
--	----------

To show **MC** can express all downward-closed properties, we show that the global disjunction is definable for classical formulas. For $\{\alpha\}_{i \in I} \subseteq \mathbf{ML}_{\rightarrow}$ define:

$$\bigvee_{i \in I} \alpha_i := \bigwedge_{i \in I} \left(\left(\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j \right) \to \alpha_i \right) \qquad \mathsf{E.g.}, \ \alpha \lor \beta = \left(\nabla \neg \alpha \to \alpha \right) \land \left(\nabla \neg \beta \to \beta \right)$$

Lemma

 $t \models \bigvee_{i \in I} \alpha_i \iff \exists i \in I : t \models \alpha_i.$

Background and Motivation Preliminaries Expressive Completeness of BSML Convexity Convex Team Logic Conclusion Refere	iminaries Expressive Completeness of 000	and Motivation Preliminaries	ackground and Motivation Preliminaries Expressive Completeness of E 00000 000
---	--	------------------------------	--

To show **MC** can express all downward-closed properties, we show that the global disjunction is definable for classical formulas. For $\{\alpha\}_{i \in I} \subseteq \mathbf{ML}_{\rightarrow}$ define:

 $\bigvee_{i \in I} \alpha_i := \bigwedge_{i \in I} \left(\left(\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j \right) \to \alpha_i \right) \qquad \mathsf{E.g.}, \ \alpha \lor \beta = \left(\nabla \neg \alpha \to \alpha \right) \land \left(\nabla \neg \beta \to \beta \right)$

Lemma

 $t \models \bigvee_{i \in I} \alpha_i \iff \exists i \in I : t \models \alpha_i.$

Proof.

 \implies : Assume for contradiction that for all $i \in I$ there is some $v_i \in t$ with $v_i \models \neg \alpha_i$.
Background and Motivation Preliminaries Expressive Completeness of BSML Convexity Convex Team Logic Conclusion Refere	ogic Conclusion References
---	----------------------------

 $\bigvee_{i \in I} \alpha_i := \bigwedge_{i \in I} \left(\left(\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j \right) \to \alpha_i \right) \qquad \mathsf{E.g.}, \ \alpha \lor \beta = \left(\nabla \neg \alpha \to \alpha \right) \land \left(\nabla \neg \beta \to \beta \right)$

Lemma

 $t \models \bigvee_{i \in I} \alpha_i \iff \exists i \in I : t \models \alpha_i.$

Proof.

 \implies : Assume for contradiction that for all $i \in I$ there is some $v_i \in t$ with $v_i \models \neg \alpha_i$. Then for each $i \in I$: $t \models \nabla \neg \alpha_i$.

Background and Motivation Preliminaries Expressive Completeness of BSML Convexity Convex Team Logic Conclusion Refere	ogic Conclusion References
---	----------------------------

 $\bigvee_{i \in I} \alpha_i \coloneqq \bigwedge_{i \in I} \left(\left(\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j \right) \to \alpha_i \right) \qquad \mathsf{E.g.}, \ \alpha \lor \beta = \left(\nabla \neg \alpha \to \alpha \right) \land \left(\nabla \neg \beta \to \beta \right)$

Lemma

 $t \models \bigvee_{i \in I} \alpha_i \iff \exists i \in I : t \models \alpha_i.$

Proof.

 \implies : Assume for contradiction that for all $i \in I$ there is some $v_i \in t$ with $v_i \models \neg \alpha_i$. Then for each $i \in I$: $t \models \nabla \neg \alpha_i$. By $t \models (\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_i) \rightarrow \alpha_i$, we have $t \models \alpha_i$ for all $i \in I$, a contradiction.

Background and Motivation Preliminaries Expressive Completeness of BSML Convexity Convex Team Logic Conclusion Reference 00000 000 000 000 000 000 000 000 000	ackground and Motivation O	n Preliminaries Expressive Co 00000 000	mpleteness of BSML Convexity	Convex Team Logic	Conclusion O	Reference
--	-------------------------------	--	------------------------------	-------------------	-----------------	-----------

 $\bigvee_{i \in I} \alpha_i \coloneqq \bigwedge_{i \in I} \left(\left(\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j \right) \to \alpha_i \right) \qquad \mathsf{E.g.}, \ \alpha \lor \beta = \left(\nabla \neg \alpha \to \alpha \right) \land \left(\nabla \neg \beta \to \beta \right)$

Lemma

 $t \models \bigvee_{i \in I} \alpha_i \iff \exists i \in I : t \models \alpha_i.$

Proof.

 \implies : Assume for contradiction that for all $i \in I$ there is some $v_i \in t$ with $v_i \models \neg \alpha_i$. Then for each $i \in I$: $t \models \nabla \neg \alpha_i$. By $t \models (\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_i) \rightarrow \alpha_i$, we have $t \models \alpha_i$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_i$.

Background and Motivation Preliminaries Expressive Completeness of BSML Convexity Convex Team Logic Conclusion Refere	ogic Conclusion References
---	----------------------------

 $\bigvee_{i \in I} \alpha_i \coloneqq \bigwedge_{i \in I} \left(\left(\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j \right) \to \alpha_i \right) \qquad \mathsf{E.g.}, \ \alpha \lor \beta = \left(\nabla \neg \alpha \to \alpha \right) \land \left(\nabla \neg \beta \to \beta \right)$

Lemma

 $t \models \bigvee_{i \in I} \alpha_i \iff \exists i \in I : t \models \alpha_i.$

Proof.

 \implies : Assume for contradiction that for all $i \in I$ there is some $v_i \in t$ with $v_i \models \neg \alpha_i$. Then for each $i \in I$: $t \models \nabla \neg \alpha_i$. By $t \models (\bigwedge_{i \in I \setminus \{i\}} \nabla \neg \alpha_i) \rightarrow \alpha_i$, we have $t \models \alpha_i$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_i$. \Leftarrow : Let $t \models \alpha_i$.

Background and Motivation Preliminaries Expressive Completeness of BSML Convexity Convex Team Logic Conclusion Reference 00000 000 000 000 000 000 000 000 000	ackground and Motivation O	n Preliminaries Expressive Co 00000 000	mpleteness of BSML Convexity	Convex Team Logic	Conclusion O	Reference
--	-------------------------------	--	------------------------------	-------------------	-----------------	-----------

 $\bigvee_{i \in I} \alpha_i \coloneqq \bigwedge_{i \in I} \left(\left(\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j \right) \to \alpha_i \right) \qquad \mathsf{E.g.}, \ \alpha \lor \beta = \left(\nabla \neg \alpha \to \alpha \right) \land \left(\nabla \neg \beta \to \beta \right)$

Lemma

 $t \models \bigvee_{i \in I} \alpha_i \iff \exists i \in I : t \models \alpha_i.$

Proof.

 $\implies: \text{Assume for contradiction that for all } i \in I \text{ there is some } v_i \in t \text{ with } v_i \models \neg \alpha_i. \text{Then for} \\ \text{each } i \in I: t \models \nabla \neg \alpha_i. \text{ By } t \models (\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_i) \rightarrow \alpha_i, \text{ we have } t \models \alpha_i \text{ for all } i \in I, \text{ a contradiction.} \\ \text{So for some } i \in I \text{ we must have have } t \models \alpha_i. \\ \iff: \text{Let } t \models \alpha_i. \text{ Let } s \subseteq t \text{ be such that } s \models \bigwedge_{i \in I \setminus \{i\}} \nabla \neg \alpha_i. \end{cases}$

Background and Motivation Preliminaries Expressive Completeness of BSML Convexity Convex Team Logic Conclusion Reference 00000 000 000 000 000 000 000 000 000	ackground and Motivation O	n Preliminaries Expressive Co 00000 000	mpleteness of BSML Convexity	Convex Team Logic	Conclusion O	Reference
--	-------------------------------	--	------------------------------	-------------------	-----------------	-----------

 $\bigvee_{i \in I} \alpha_i \coloneqq \bigwedge_{i \in I} \left(\left(\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j \right) \to \alpha_i \right) \qquad \mathsf{E.g.}, \ \alpha \lor \beta = \left(\nabla \neg \alpha \to \alpha \right) \land \left(\nabla \neg \beta \to \beta \right)$

Lemma

 $t \models \bigvee_{i \in I} \alpha_i \iff \exists i \in I : t \models \alpha_i.$

Proof.

 \implies : Assume for contradiction that for all $i \in I$ there is some $v_i \in t$ with $v_i \models \neg \alpha_i$. Then for each $i \in I$: $t \models \nabla \neg \alpha_i$. By $t \models (\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_i) \rightarrow \alpha_i$, we have $t \models \alpha_i$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \models \alpha_i$.

 \Leftarrow : Let $t \models \alpha_i$. Let $s \subseteq t$ be such that $s \models \bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j$. By downward closure also $s \models \alpha_i$.

Background and Motivation Preliminaries Expressive Completeness of BSML Convexity Convex Team Logic Conclusion Reference 00000 000 000 000 000 000 000 000 000	ackground and Motivation O	n Preliminaries Expressive Co 00000 000	mpleteness of BSML Convexity	Convex Team Logic	Conclusion O	Reference
--	-------------------------------	--	------------------------------	-------------------	-----------------	-----------

 $\bigvee_{i \in I} \alpha_i \coloneqq \bigwedge_{i \in I} \left(\left(\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j \right) \to \alpha_i \right) \qquad \mathsf{E.g.}, \ \alpha \lor \beta = \left(\nabla \neg \alpha \to \alpha \right) \land \left(\nabla \neg \beta \to \beta \right)$

Lemma

 $t \models \bigvee_{i \in I} \alpha_i \iff \exists i \in I : t \models \alpha_i.$

Proof.

 $\implies: \text{Assume for contradiction that for all } i \in I \text{ there is some } v_i \in t \text{ with } v_i \models \neg \alpha_i. \text{ Then for each } i \in I: t \models \nabla \neg \alpha_i. \text{ By } t \models (\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_i) \rightarrow \alpha_i, \text{ we have } t \models \alpha_i \text{ for all } i \in I, \text{ a contradiction.} \text{ So for some } i \in I \text{ we must have have } t \models \alpha_i. \\ \iff: \text{Let } t \models \alpha_i. \text{ Let } s \subseteq t \text{ be such that } s \models \bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j. \text{ By downward closure also } s \models \alpha_i. \\ \text{So } t \models (\bigwedge_{i \in I \setminus \{i\}} \nabla \neg \alpha_i) \rightarrow \alpha_i. \end{cases}$

Background and Motivation Preliminaries Expressive Completeness of BSML Convexity Convex Team Logic Conclusion Reference 00000 000 000 000 000 000 000 000 000	ackground and Motivation O	n Preliminaries Expressive Co 00000 000	mpleteness of BSML Convexity	Convex Team Logic	Conclusion O	Reference
--	-------------------------------	--	------------------------------	-------------------	-----------------	-----------

 $\bigvee_{i \in I} \alpha_i \coloneqq \bigwedge_{i \in I} \left(\left(\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j \right) \to \alpha_i \right) \qquad \mathsf{E.g.}, \ \alpha \lor \beta = \left(\nabla \neg \alpha \to \alpha \right) \land \left(\nabla \neg \beta \to \beta \right)$

Lemma

 $t \models \bigvee_{i \in I} \alpha_i \iff \exists i \in I : t \models \alpha_i.$

Proof.

 $\implies: \text{Assume for contradiction that for all } i \in I \text{ there is some } v_i \in t \text{ with } v_i \models \neg \alpha_i. \text{ Then for each } i \in I: t \models \nabla \neg \alpha_i. \text{ By } t \models (\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_i) \rightarrow \alpha_i, \text{ we have } t \models \alpha_i \text{ for all } i \in I, \text{ a contradiction.} \text{ So for some } i \in I \text{ we must have have } t \models \alpha_i. \\ \iff: \text{Let } t \models \alpha_i. \text{ Let } s \subseteq t \text{ be such that } s \models \bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j. \text{ By downward closure also } s \models \alpha_i. \\ \text{So } t \models (\bigwedge_{i \in I \setminus \{i\}} \nabla \neg \alpha_i) \rightarrow \alpha_i. \text{ Now fix } k \neq i; k \in I. \end{cases}$

Background and Motivation Preliminaries Expressive Completeness of BSML Convexity Convex Team Logic Conclusion Reference 00000 000 000 000 000 000 000 000 000	ackground and Motivation O	n Preliminaries Expressive Co 00000 000	mpleteness of BSML Convexity	Convex Team Logic	Conclusion O	Reference
--	-------------------------------	--	------------------------------	-------------------	-----------------	-----------

 $\bigvee_{i \in I} \alpha_i \coloneqq \bigwedge_{i \in I} \left(\left(\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j \right) \to \alpha_i \right) \qquad \mathsf{E.g.}, \ \alpha \lor \beta = \left(\nabla \neg \alpha \to \alpha \right) \land \left(\nabla \neg \beta \to \beta \right)$

Lemma

 $t \models \bigvee_{i \in I} \alpha_i \iff \exists i \in I : t \models \alpha_i.$

Proof.

 $\implies: \text{Assume for contradiction that for all } i \in I \text{ there is some } v_i \in t \text{ with } v_i \models \neg \alpha_i. \text{ Then for each } i \in I: t \models \nabla \neg \alpha_i. \text{ By } t \models (\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_i) \rightarrow \alpha_i, \text{ we have } t \models \alpha_i \text{ for all } i \in I, \text{ a contradiction.} \text{ So for some } i \in I \text{ we must have have } t \models \alpha_i. \\ \iff: \text{Let } t \models \alpha_i. \text{ Let } s \subseteq t \text{ be such that } s \models \bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j. \text{ By downward closure also } s \models \alpha_i. \\ \text{So } t \models (\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j) \rightarrow \alpha_i. \text{ Now fix } k \neq i; k \in I. \text{ There can be no } s \subseteq t \text{ such that } s \models \bigwedge_{j \in I \setminus \{k\}} \nabla \neg \alpha_j \text{ because } s \models \alpha_i. \end{cases}$

Background and Motivation Preliminaries Expressive Completeness of BSML Convexity Convex Team Logic Conclusion Reference 00000 000 000 000 000 000 000 000 000	ackground and Motivation O	n Preliminaries Expressive Co 00000 000	mpleteness of BSML Convexity	Convex Team Logic	Conclusion O	Reference
--	-------------------------------	--	------------------------------	-------------------	-----------------	-----------

 $\bigvee_{i \in I} \alpha_i \coloneqq \bigwedge_{i \in I} \left(\left(\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j \right) \to \alpha_i \right) \qquad \mathsf{E.g.}, \ \alpha \lor \beta = \left(\nabla \neg \alpha \to \alpha \right) \land \left(\nabla \neg \beta \to \beta \right)$

Lemma

 $t \models \bigvee_{i \in I} \alpha_i \iff \exists i \in I : t \models \alpha_i.$

Proof.

 $\implies: \text{Assume for contradiction that for all } i \in I \text{ there is some } v_i \in t \text{ with } v_i \models \neg \alpha_i. \text{ Then for each } i \in I: t \models \nabla \neg \alpha_i. \text{ By } t \models (\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_i) \rightarrow \alpha_i, \text{ we have } t \models \alpha_i \text{ for all } i \in I, \text{ a contradiction.} \text{ So for some } i \in I \text{ we must have have } t \models \alpha_i. \\ \iff: \text{Let } t \models \alpha_i. \text{ Let } s \subseteq t \text{ be such that } s \models \bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j. \text{ By downward closure also } s \models \alpha_i. \\ \text{So } t \models (\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j) \rightarrow \alpha_i. \text{ Now fix } k \neq i; k \in I. \text{ There can be no } s \subseteq t \text{ such that } s \models \bigwedge_{j \in I \setminus \{k\}} \nabla \neg \alpha_j) \rightarrow \alpha_k. \qquad \Box$

Background and Motivation Preliminaries Expressive Completeness of BSML Convexity Convex Team Logic Conclusion Reference 00000 000 000 000 000 000 000 000 000	Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic	Conclusion O	References
--	---------------------------	------------------------	---------------------------------	-----------------	-------------------	-----------------	------------

 $\bigvee_{i \in I} \alpha_i \coloneqq \bigwedge_{i \in I} \left(\left(\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j \right) \to \alpha_i \right) \qquad \mathsf{E.g.}, \ \alpha \lor \beta = \left(\nabla \neg \alpha \to \alpha \right) \land \left(\nabla \neg \beta \to \beta \right)$

Lemma

 $t \models \bigvee_{i \in I} \alpha_i \iff \exists i \in I : t \models \alpha_i.$

Proof.

 $\implies: \text{Assume for contradiction that for all } i \in I \text{ there is some } v_i \in t \text{ with } v_i \models \neg \alpha_i. \text{ Then for each } i \in I: t \models \nabla \neg \alpha_i. \text{ By } t \models (\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_i) \rightarrow \alpha_i, \text{ we have } t \models \alpha_i \text{ for all } i \in I, \text{ a contradiction.} \text{ So for some } i \in I \text{ we must have have } t \models \alpha_i. \\ \iff: \text{Let } t \models \alpha_i. \text{ Let } s \subseteq t \text{ be such that } s \models \bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j. \text{ By downward closure also } s \models \alpha_i. \\ \text{So } t \models (\bigwedge_{j \in I \setminus \{i\}} \nabla \neg \alpha_j) \rightarrow \alpha_i. \text{ Now fix } k \neq i; k \in I. \text{ There can be no } s \subseteq t \text{ such that } s \models \bigwedge_{j \in I \setminus \{k\}} \nabla \neg \alpha_j) \rightarrow \alpha_k. \qquad \Box$

Theorem

MC is complete for convex properties invariant under bounded bisimulation.

Background and Motivation Preliminaries 0000 Expressive Completeness of BSML 00 Convexity 00000	am Logic Conclusion References o o
---	---------------------------------------

Updated picture:

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 0000000●	Conclusion O	References
---------------------------	------------------------	---------------------------------	-----------------	-------------------------------	-----------------	------------

Relationship with inquisitive logic: Let **PC** be the propositional fragment of **MC**—syntax:

 $\phi \coloneqq p \mid \bot \mid \phi \land \phi \mid \phi \to \phi \mid \nabla \phi$

InqB, propositional inquisitive logic, has the syntax:

$$\phi ::= \boldsymbol{p} \mid \bot \mid \phi \land \phi \mid \phi \to \phi \mid \phi \lor \phi$$

InqB is expressively complete for downward-closed properties with the empty state property, so $||InqB|| \subset ||\mathbf{PC}||$. \forall is not definable in general in **PC** (since **PC** + \forall is not convex).

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 0000000●	Conclusion O	References
---------------------------	------------------------	---------------------------------	-----------------	-------------------------------	-----------------	------------

Relationship with inquisitive logic: Let **PC** be the propositional fragment of **MC**—syntax:

 $\phi \coloneqq p \mid \bot \mid \phi \land \phi \mid \phi \to \phi \mid \nabla \phi$

InqB, propositional inquisitive logic, has the syntax:

 $\phi \coloneqq \boldsymbol{p} \mid \bot \mid \phi \land \phi \mid \phi \to \phi \mid \phi \lor \phi$

InqB is expressively complete for downward-closed properties with the empty state property, so $||InqB|| \subset ||\mathbf{PC}||$. \forall is not definable in general in **PC** (since $\mathbf{PC} + \forall$ is not convex).

Similar logics which are either not convex or cannot express all convex properties (we consider propositional logics for simplicity):

 $PL_{\rightarrow}(\forall, \nabla)$ (propositional inquisitive logic with ∇) is not convex. Example: $(p \land \nabla q) \lor (a \land \nabla b).$

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 0000000●	Conclusion O	References
---------------------------	------------------------	---------------------------------	-----------------	-------------------------------	-----------------	------------

Relationship with inquisitive logic: Let **PC** be the propositional fragment of **MC**—syntax:

 $\phi \coloneqq p \mid \bot \mid \phi \land \phi \mid \phi \to \phi \mid \nabla \phi$

InqB, propositional inquisitive logic, has the syntax:

 $\phi \coloneqq \boldsymbol{p} \mid \bot \mid \phi \land \phi \mid \phi \to \phi \mid \phi \lor \phi$

InqB is expressively complete for downward-closed properties with the empty state property, so $||InqB|| \subset ||\mathbf{PC}||$. \forall is not definable in general in **PC** (since $\mathbf{PC} + \forall$ is not convex).

Similar logics which are either not convex or cannot express all convex properties (we consider propositional logics for simplicity):

 $PL_{\rightarrow}(\forall, \nabla)$ (propositional inquisitive logic with ∇) is not convex. Example: $(p \land \nabla q) \lor (a \land \nabla b).$

 $PL_{\rightarrow}(NE)$ is not complete for convex properties because it is "downward closed except for the empty state": $s \models \phi$ and $t \subseteq s$ where $t \neq \emptyset$ imply $t \models \phi$. Similarly for $PL_{\rightarrow}(NE, \mathbb{V})$.

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 00000000	Conclusion ●	References

Topics for further investigation:

Over formulas, dependence logic characterizes all downward closed Σ_1^1 -properties. What logic characterizes all convex Σ_1^1 -properties?

Are there any linguistic applications of convex team logic?

Background and Motivation	Preliminaries 00000	Expressive Completeness of BSML	Convexity 00	Convex Team Logic 00000000	Conclusion 0	References
References						

- [1] Maria Aloni. Logic and conversation: the case of free choice. Semantics and Pragmatics, 15(5), 2022. doi: 10.3765/sp.15.5.
- [2] Aleksi Anttila. The logic of free choice. axiomatizations of state-based modal logics. MSc thesis, University of Amsterdam, 2021.
- [3] Lauri Hella and Johanna Stumpf. The expressive power of modal logic with inclusion atoms. *Electronic Proceedings in Theoretical Computer Science*, 193:129–143, 2015. doi: 10.4204/eptcs.193.10.
- [4] Lauri Hella, Kerkko Luosto, Katsuhiko Sano, and Jonni Virtema. The expressive power of modal dependence logic. In Barteld Kooi Rajeev Goré and Agi Kurucz, editors, Advances in Modal Logic, volume 10, pages 294–312. College Publications, 2014. doi: 10.48550/arXiv.1406.6266.
- [5] Juha Kontinen, Julian-Steffen Müller, Henning Schnoor, and Heribert Vollmer. A van Benthem theorem for modal team semantics. In Stephan Kreutzer, editor, 24th EACSL Annual Conference on Computer Science Logic (CSL 2015), volume 41 of Leibniz International Proceedings in Informatics (LIPIcs), pages 277-291. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi: 10.4230/LIPIcs.CSL.2015.277.
- Jouko Väänänen. Dependence Logic: a New Approach to Independence Friendly Logic. Cambridge University Press, 2007. doi: 10.1017/CBO9780511611193.
- [7] Fan Yang. Modal dependence logics: axiomatizations and model-theoretic properties. Logic Journal of the IGPL, 25(5):773–805, 2017. doi: 10.1093/jigpal/jzx023.
- [8] Fan Yang and Jouko Väänänen. Propositional team logics. Annals of Pure and Applied Logic, 168(7):1406–1441, 2017. doi: 10.1016/j.apal.2017.01.007.