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Outline for the talk
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– Preliminaries
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What is expressive completeness?
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– Convex Team Logic
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Background and Motivation

First NihiL talk:

● Among more, Aleksi introduced two extensions of BSML, and proved that they were
expressively completely for all properties [invariant under bounded bisimulation] and all
union-closed properties, respectively.

● The problem of characterizing the expressive power of BSML was left open.

Today (last NihiL talk before Summer hiatus):

● We show that BSML is expressively complete for all convex, union-closed properties.

● We introduce a logic which is expressively complete for all convex properties simpliciter.

Why expressive completeness?

● Characterization of logic (à la van Benthem)

● Provides normal form

● Normal form as heuristic for proof theory
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Expressive powers compared:

downward closed

union closed

ML

BSML

ML(⊆) BSML⊘

ML(/// ),ML(= (⋅))

ML(�) ML(�, /// ) ML(⊆, /// ) BSML
///
,ML(∼)

expressively complete no empty state property

?
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Syntax of BSML

ϕ ∶∶= p ∣ ¬ϕ ∣ (ϕ ∧ ϕ) ∣ (ϕ ∨ ϕ) ∣ ◇ ϕ ∣ ne

Semantics for support (()

s ( p ⇐⇒ ∀w ∈ s ∶ w ∈ V (p)
s ( ¬ϕ ⇐⇒ s ) ϕ
s ( ϕ ∧ ψ ⇐⇒ s ( ϕ and s ( ψ
s ( ϕ ∨ ψ ⇐⇒ ∃t, t ′ ∶ t ∪ t ′ = s and t ( ϕ and t ′ ( ψ
s ( ◇ϕ ⇐⇒ ∀w ∈ s ∶ ∃t ⊆ R[w] ∶ t ≠ ∅ and t ( ϕ
s ( ne ⇐⇒ s ≠ ∅

R[w] = {v ∈W ∣ wRv}
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Split disjunction ‘∨’ and the non-emptiness atom ‘ne’

s ( ϕ ∨ ψ ⇐⇒ ∃t, t ′ ∶ t ∪ t ′ = s,t ( ϕ, t ′ ( ψ
s ( ne ⇐⇒ s ≠ ∅

wp wpq

wq w

(a) s ( (p ∧ ne) ∨ (q ∧ ne)

wp wpq

wq w

(b) s * (p ∧ ne) ∨ (q ∧ ne)
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Expressive Completeness

OBS: In what follows, we fix a finite set of propositional letters P.

Definition

● A pointed state model is a pair (M, s) where M is a model over P and s is a state on M.

● A (state) property is a class of pointed state models {(M, s)}.
● For a formula ϕ, we define its state property as ∣∣ϕ∣∣∶= {(M, s) ∣M, s ( ϕ}.

Definition (Expressive Completeness)

We say that a logic (or language) L is expressively complete for a class of properties C :iff

∣∣L∣∣ ∶= {∣∣ϕ∣∣ ∣ ϕ ∈ L} = C
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Definition (Closure properties)

We say that

ϕ is downward closed iff [M, s ( ϕ and t ⊆ s] Ô⇒ M, t ( ϕ

ϕ is union closed iff [M, s ( ϕ for all s ∈ S ≠ ∅] Ô⇒ M,⋃S ( ϕ

ϕ has the empty state property iff M,∅ ( ϕ for all M

ϕ is flat iff M, s ( ϕ ⇐⇒ M,{w} ( ϕ for all w ∈ s

Observe: flat ⇐⇒ downward closed & union closed & empty state property

And observe: For formulas α in classical modal logic ML (no ne):

s ( α ⇐⇒ ∀w ∈ s ∶ {w} ( α ⇐⇒ ∀w ∈ s ∶ w ( α

Proposition

{∣∣ϕ∣∣ ∣ ϕ ∈ML}
=

{property P ∣ P is flat and invariant under bounded bisimulation }
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State k-bisimulation:

s ⇌k s′ ∶ ⇐⇒
forth: ∀w ∈ s ∶ ∃w ′ ∈ s′ ∶ w ⇌k w ′

back: ∀w ′ ∈ s′ ∶ ∃w ∈ s ∶ w ⇌k w ′

Observe: s ⇌k s′ Ô⇒ s ”k s′

s s′

w1 w2

w3 w4

w ′1 w ′2

w ′3 w ′4

Definition

We say that a property P is invariant under bounded bisimulation :iff it is invariant under k-bisimulation for
some k ∈ ω.
Fact

Restricting to our finite set of propositional letters P, for any world w ∈M, we can define Hintikka formulas
χk
w ∈ML s.t. for all w ′:

w ′ ( χk
w ⇐⇒ w ⇌k w ′

Thus, for any team t, we can define formulas χk
t ∶= ⋁w∈t χ

k
w s.t.

t′ ( χk
t ⇐⇒ t′ ⊆ s ⇌k t
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Theorem (Aloni, Anttila, Yang [2023])

∣∣BSML/// ∣∣ = {property P ∣ P is invariant under bounded bisimulation}

and

∣∣BSML⊘∣∣ = {property P ∣ P is union closed and invariant under bounded bisimulation}

Definition

We say that a formula ϕ is convex :iff

if t ( ϕ, t ′′ ( ϕ and t ⊆ t ′ ⊆ t ′′, then t ′ ( ϕ.

Theorem (expressive completeness of BSML)

∣∣BSML∣∣ = {property P ∣ P is convex, union closed and invariant under bounded bisimulation}
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Theorem (expressive completeness of BSML)

∣∣BSML∣∣ = {property P ∣ P is convex, union closed and invariant under bounded bisimulation}

Proof.

‘⊆’: Bounded bisimulation: ✓
Union closure: ✓
Convexity: By induction, *see blackboard*

‘⊇’: Let P be an arbitrary convex, union closed property invariant under k-bisimulation.

● If there is some (M,∅) ∈ P , then by invariance under k-bisimulation, P has the empty state
property. So by convexity, it is downwards closed, hence flat. Thus, we can find ϕ ∈ML ⊆ BSML
s.t. ∣∣ϕ∣∣ = P .

● If not, take representatives t1, ..., tn of k-bis. equivalence classes and consider the following
formula:

φ
k
P ∶= ⋁({NE ∧ (χk

w1
∨⋯ ∨ χk

wn
) ∣ (w1, ...,wn) ∈ (t1 ×⋯ × tn)})

We claim that ∣∣φk
P ∣∣ = P . *See blackboard*
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Recap and normal form

– We have shown that BSML is expressively complete for all convex, union-closed properties.

– We have obtained a normal form for BSML-formulas ϕ, namely of the form

φk
P ∶= ⋁({NE ∧ (χk

w1
∨⋯ ∨ χk

wn
) ∣ (w1, ...,wn) ∈ (t1 ×⋯ × tn)})

– Or, in fact, equivalently:

⋁
t∈P

χk
t ∧⋀{((χk

w1
∨ χk

w2
∨ . . . ∨ χk

wn
) ∧ ne)∨ ã ∣ (w1, ...,wn) ∈ (t1 ×⋯ × tn)},

where the former conjunct is flat and the latter is upwards closed.
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Updated picture:

downward closed

union closed

convex

ML

?

BSML

BSML

ML(⊆) BSML⊘

ML(/// ),ML(= (⋅))

ML(�) ML(�, /// ) ML(⊆, /// ) BSML
///

expressively complete no empty state property

?

What logic is expressively complete for convex properties (without the empty team property)? Note:

ϕ is convex and has the empty team property ⇐⇒
ϕ is downward closed and has the empty team property

So ML(= (⋅)) is expressively complete for convex properties with the empty team property.
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Examples of convex sentences/formulas which are not union closed:

Between five and ten bananas are yellow.

(q /// ¬q) ∧ ((r ∧ ne)∨ ã) (where ã∶= (p ∨ ¬p)
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Recall the following characteristic formulas for convex union-closed properties:

If P ≠ ∅: ⋁
s∈P

χk
s ∧⋀{((χk

w1
∨ χk

w2
∨ . . . ∨ χk

n) ∧ ne)∨ ã ∣ (w1, ...,wn) ∈ (s1 ×⋯ × sn)}

which we may write: ⋁
s∈P

χk
s ∧ ⋀

u∈∏P

((χk
u ∧ ne)∨ ã)

If P = ∅: � ∧ ne

where P ⇌k {s1, . . . , sn}. The first conjunct in the non-empty characteristic formula is a
characteristic formula for flat properties, and the second for upward-closed properties.

To get a characteristic formula for (non-empty) convex properties, simply replace the first
conjunct with a characteristic formula for downward-closed properties:

///
s∈P

χk
s ∧ ⋀

u∈∏P

((χk
u ∧ ne)∨ ã)
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Proposition

For any non-empty convex P invariant under ⇌k :

t ∈ P ⇐⇒ t ( ///
s∈P

χk
s ∧ ⋀

u∈∏P

((χk
u ∧ ne)∨ ã)

Proof.

Ô⇒ : Clearly t ( χk
t so t ( ///s∈Pχ

k
s . If P has the empty team property, ∏P = ∅ so the second conjunct is ã

and we are done. Otherwise let u ∈ ∏P. For some w ∈ u we have w ∈ t, so t ( (χk
w ∧ ne)∨ ã. Therefore also

t ( ((χw ∨⋁v∈u/{w} χ
k
v ) ∧ ne)∨ ã whence t ( (χk

u ∧ ne)∨ ã.

⇐Ô: By t ( /// s∈P χk
s there is some s ∈ P s.t. t ⇌k s′ ⊆ s.

Claim: by t ( ⋀u∈∏P((χk
u ∧ ne)∨ ã) there is some y ∈ P s.t. y ⇌k t′ ⊆ t. Assume for contradiction that

∀s ∈ P ∶ ∃ws ∈ s ∶/∃ v ∈ t ∶ ws ⇌k v (i.e., ∀s ∈ P ∶ s /⊆ t, in modal terms). Then {ws ∣ s ∈ P} ∈ ∏P so
t ( ((⋁{ws ∣ s∈P} χ

k
ws
) ∧ ne)∨ ã. But then for some s ∈ P we have t ( (χk

ws
∧ ne)∨ ã so for some

v ∈ t ∶ w ⇌k v , a contradiction. So for some y ∈ P we must have ∀w ∈ y ∶ ∃v ∈ t ∶ w ⇌k v , i.e., y ⇌k t′ ⊆ t.
By ⇌k -invariance, t

′ ∈ P. t′ ⊆ t ⇌k s′, so t′ ⇌k s′′ ⊆ s′ whence s′′ ∈ P by ⇌k -invariance. s′′ ⊆ s′ ⊆ s ∈ P so

s′ ∈ P by convexity. Then t ∈ P by ⇌k -invariance.
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So we can capture all convex properties in ML(ne, /// ), but this is clearly not convex; e.g.,
((p ∧ ne) ∨ (¬p ∧ ne)) /// q is not convex.

This is not surprising given ML(ne, /// ) is complete for all properties, but there is a more general
issue with the tensor disjunction: if ϕ or ψ is not union closed, ϕ ∨ ψ might not be convex:

Fact

If a logic can express all convex properties and has the connective ∨, it is not convex.

Recall the intuitionistic implication →:

s ( ϕ→ ψ ⇐⇒ ∀t ⊆ s ∶ t ( ϕ implies t ( ψ

Consider ψ ∶= (((p ∧ ne) ∨ (¬p ∧ ne)) → q) ∧ ((r ∧ ne)∨ ã). It is easy to see that ∣∣ψ∣∣ is
convex (the first conjunct is downward closed; the second, upward closed) and not union
closed. Let ϕ ∶= ψ ∨ ψ. We show ϕ is not convex. Let t ∶= {wp,wpr ,w∅,wr}. Then
{wp,wpr} ( ψ and {w ,wr} ( ψ so t ( ϕ. Clearly also {wr} ( ϕ. But {wr ,wp} * ϕ because
{wr} is the only substate that makes ψ true.
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To obtain an expressively complete convex logic, we change the classical base of the logic.

Syntax of classical modal logic with → ML→:

α ∶∶= p ∣ � ∣ α ∧ α ∣ α → α ∣ ◇ α

Syntax of modal convex team logic MC:

ϕ ∶∶= p ∣ � ∣ ϕ ∧ ϕ ∣ ϕ→ ϕ ∣ ◇ ϕ ∣ ∇ϕ

∇ is the ”epistemic might” operator which has been used to formalize epistemic contradictions:

s ( ∇ϕ ⇐⇒ ∃t ⊆ s ∶ t ≠ ∅ and t ( ϕ

Epistemic contradiction: #It is raining but it might not be raining.
Formalized as: r ∧∇¬r . Contradiction: r ∧∇¬r (á.

Note that ∇ϕ ” (ϕ ∧ ne)∨ ã and that ne ” ∇ ã.
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Proposition

MC is convex.

Proof.

p,� and ◇ϕ are flat and and hence convex. ϕ→ ϕ is downward closed and hence convex. ∇ϕ
is upward closed and hence convex. The conjunction case follows immediately from the
induction hypothesis.

By the foregoing, if MC can express the empty property, all upward-closed properties, and all
downward-closed properties, it can express all convex properties.

MC can express the empty property since t ∈ P ⇐⇒ t ( ∇�.

MC can express all upward-closed properties since

⋀
u∈∏P

((χk
u ∧ ne)∨ ã) ” ⋀

u∈∏P

∇χk
u
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To show MC can express all downward-closed properties, we show that the global disjunction is
definable for classical formulas. For {α}i∈I ⊆ML→ define:

///
i∈I

αi ∶= ⋀
i∈I

(( ⋀
j∈I/{i}

∇¬αj) → αi) E.g., α /// β = (∇¬α → α) ∧ (∇¬β → β)

Lemma

t ( ///i∈Iαi ⇐⇒ ∃i ∈ I ∶ t ( αi .

Proof.

Ô⇒ : Assume for contradiction that for all i ∈ I there is some vi ∈ t with vi ( ¬αi .Then for
each i ∈ I : t ( ∇¬αi . By t ( (⋀j∈I/{i}∇¬αi) → αi , we have t ( αi for all i ∈ I , a contradiction.
So for some i ∈ I we must have have t ( αi .
⇐Ô: Let t ( αi . Let s ⊆ t be such that s ( ⋀j∈I/{i}∇¬αj . By downward closure also s ( αi .
So t ( (⋀j∈I/{i}∇¬αj) → αi . Now fix k ≠ i ; k ∈ I . There can be no s ⊆ t such that
s ( ⋀j∈I/{k}∇¬αj because s ( αi . Therefore t ( (⋀j∈I/{k}∇¬αj) → αk .

Theorem

MC is complete for convex properties invariant under bounded bisimulation.
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Relationship with inquisitive logic: Let PC be the propositional fragment of MC—syntax:

ϕ ∶∶= p ∣ � ∣ ϕ ∧ ϕ ∣ ϕ→ ϕ ∣ ∇ϕ

InqB, propositional inquisitive logic, has the syntax:

ϕ ∶∶= p ∣ � ∣ ϕ ∧ ϕ ∣ ϕ→ ϕ ∣ ϕ /// ϕ

InqB is expressively complete for downward-closed properties with the empty state property, so
∣∣InqB ∣∣ ⊂ ∣∣PC∣∣. /// is not definable in general in PC (since PC + /// is not convex).

Similar logics which are either not convex or cannot express all convex properties (we consider
propositional logics for simplicity):

PL→(/// ,∇) (propositional inquisitive logic with ∇) is not convex. Example:
(p ∧∇q) /// (a ∧∇b).
PL→(ne) is not complete for convex properties because it is ”downward closed except for
the empty state”: s ( ϕ and t ⊆ s where t ≠ ∅ imply t ( ϕ. Similarly for PL→(ne, /// ).
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Topics for further investigation:

Over formulas, dependence logic characterizes all downward closed Σ1
1-properties. What logic

characterizes all convex Σ1
1-properties?

Are there any linguistic applications of convex team logic?
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