# BSML and Expressive Completeness 

Aleksi Anttila ${ }^{1}$, Søren Brinck Knudstorp ${ }^{2}$<br>${ }^{1}$ University of Helsinki ${ }^{2}$ University of Amsterdam<br>NihiL seminar<br>ILLC, University of Amsterdam

## Outline for the talk

- Background and Motivation
- Preliminaries


## What is BSML?

What is expressive completeness?

- Expressive Completeness of BSML
- Convex Team Logic
- Conclusion


## Background and Motivation

## First NihiL talk:

- Among more, Aleksi introduced two extensions of BSML, and proved that they were expressively completely for all properties [invariant under bounded bisimulation] and all union-closed properties, respectively.
- The problem of characterizing the expressive power of BSML was left open

Today (last NihiL talk before Summer hiatus):

- We show that BSML is expressively complete fo all convex, union-closed properties.
- We introduce a logic which is expressively complete for all convex properties simpliciter.

Why expressive completeness?

- Characterization of logic (à la van Benthem)
- Provides normal form
- Normal form as heuristic for proof theory


## Background and Motivation

## First NihiL talk:

- Among more, Aleksi introduced two extensions of BSML, and proved that they were expressively completely for all properties [invariant under bounded bisimulation] and all union-closed properties, respectively.
- The problem of characterizing the expressive power of BSML was left open.

Today (last NihiL talk before Summer hiatus):

- We show that BSML is expressively complete for all convex, union-closed properties.
- We introduce a logic which is expressively complete for all convex properties simpliciter.

Why expressive completeness?

- Characterization of logic (à la van Benthem)
- Provides normal form
- Normal form as heuristic for proof theory


## Background and Motivation

## First NihiL talk:

- Among more, Aleksi introduced two extensions of BSML, and proved that they were expressively completely for all properties [invariant under bounded bisimulation] and all union-closed properties, respectively.
- The problem of characterizing the expressive power of BSML was left open.

Today (last NihiL talk before Summer hiatus):

- We show that BSML is expressively complete for all convex, union-closed properties.
- We introduce a logic which is expressively complete for all convex properties simpliciter.

```
Why expressive completeness?
    - Characterization of logic (à la van Benthem)
    - Provides normal form
    - Normal form as heuristic for proof theory
```


## Background and Motivation

## First NihiL talk:

- Among more, Aleksi introduced two extensions of BSML, and proved that they were expressively completely for all properties [invariant under bounded bisimulation] and all union-closed properties, respectively.
- The problem of characterizing the expressive power of BSML was left open.


## Today (last NihiL talk before Summer hiatus):

- We show that BSML is expressively complete for all convex, union-closed properties.
- We introduce a logic which is expressively complete for all convex properties simpliciter.

Why expressive completeness?

- Characterization of logic (à la van Benthem)
- Provides normal form
- Normal form as heuristic for proof theory


## Background and Motivation

## First NihiL talk:

- Among more, Aleksi introduced two extensions of BSML, and proved that they were expressively completely for all properties [invariant under bounded bisimulation] and all union-closed properties, respectively.
- The problem of characterizing the expressive power of BSML was left open.


## Today (last NihiL talk before Summer hiatus):

- We show that BSML is expressively complete for all convex, union-closed properties.
- We introduce a logic which is expressively complete for all convex properties simpliciter.


## Why expressive completeness?

- Characterization of logic (à la van Benthem)
- Provides normal form
- Normal form as heuristic for proof theory


## Background and Motivation

## First NihiL talk:

- Among more, Aleksi introduced two extensions of BSML, and proved that they were expressively completely for all properties [invariant under bounded bisimulation] and all union-closed properties, respectively.
- The problem of characterizing the expressive power of BSML was left open.


## Today (last NihiL talk before Summer hiatus):

- We show that BSML is expressively complete for all convex, union-closed properties.
- We introduce a logic which is expressively complete for all convex properties simpliciter.


## Why expressive completeness?

- Characterization of logic (à la van Benthem)
- Provides normal form
- Normal form as heuristic for proof theory


## Background and Motivation

## First NihiL talk:

- Among more, Aleksi introduced two extensions of BSML, and proved that they were expressively completely for all properties [invariant under bounded bisimulation] and all union-closed properties, respectively.
- The problem of characterizing the expressive power of BSML was left open.


## Today (last NihiL talk before Summer hiatus):

- We show that BSML is expressively complete for all convex, union-closed properties.
- We introduce a logic which is expressively complete for all convex properties simpliciter.


## Why expressive completeness?

- Characterization of logic (à la van Benthem)
- Provides normal form
- Normal form as heuristic for proof theory

Expressive powers compared：


## Syntax of BSML

$$
\phi::=p|\neg \phi|(\phi \wedge \phi)|(\phi \vee \phi)| \diamond \phi \mid \mathrm{NE}
$$

## Semantics for support $(\models)$

| $s^{\prime}=p$ | $\Longleftrightarrow$ | $\forall w \in s: w \in V(p)$ |
| :---: | :---: | :---: |
| $s \models \neg \phi$ | $\Longleftrightarrow$ | $s=\phi$ |
| $s \models \phi \wedge \psi$ | $\Longleftrightarrow$ | $s \models \phi$ and $s \models \psi$ |
| $s \models \phi \vee \psi$ | $\Longleftrightarrow$ | $\exists t, t^{\prime}: t \cup t^{\prime}=s$ and $t \models \phi$ and $t^{\prime}$ |
| $s \models \diamond \phi$ | $\Longleftrightarrow$ | $\forall w \in s: \exists t \subseteq R[w]: t \neq \varnothing$ and $t \models \phi$ |
| $s \models N E$ | $\Longleftrightarrow$ | $s \neq \varnothing$ |

$\square$
$R[w]=\{v \in W \mid w R v\}$

## Syntax of BSML

$$
\phi::=p|\neg \phi|(\phi \wedge \phi)|(\phi \vee \phi)| \diamond \phi \mid \mathrm{NE}
$$

Semantics for support $(\models)$

$$
\begin{array}{lll}
s \models p & \Longleftrightarrow & \forall w \in s: w \in V(p) \\
s \models \neg \phi & \Longleftrightarrow & s=\phi \\
s \models \phi \wedge \psi & \Longleftrightarrow & s \models \phi \text { and } s \models \psi \\
s \models \phi \vee \psi & \Longleftrightarrow & \exists t, t^{\prime}: t \cup t^{\prime}=s \text { and } t \models \phi \text { and } t^{\prime} \models \psi \\
s \models \diamond \phi & \Longleftrightarrow & \forall w \in s: \exists t \subseteq R[w]: t \neq \varnothing \text { and } t \models \phi \\
s \models \mathrm{NE} & \Longleftrightarrow & s \neq \varnothing
\end{array}
$$

$$
R[w]=\{v \in W \mid w R v\}
$$

Split disjunction ' $v$ ' and the non-emptiness atom ' NE '

$$
\begin{array}{ll}
s \models \phi \vee \psi & \Longleftrightarrow \quad \exists t, t^{\prime}: \quad t \cup t^{\prime}=s, t \models \phi, t^{\prime} \models \psi \\
s \models \mathrm{NE} & \Longleftrightarrow \quad s \neq \varnothing
\end{array}
$$


(a) $s \vDash(p \wedge N E) \vee(q \wedge N E)$
(b) $s \not \vDash(p \wedge \mathrm{NE}) \vee(q \wedge \mathrm{NE})$

## Expressive Completeness

OBS: In what follows, we fix a finite set of propositional letters $\mathbf{P}$.

## Definition

- A pointed state model is a pair (M,s) where $M$ is a model over $P$ and $s$ is a state on $M$
- A (state) property is a class of pointed state models $\{(M, s)\}$
- For a formula $\phi$, we define its state property as $\|\phi\|:=\{(M, s) \mid M, s \models \phi\}$


## Definition (Expressive Completeness)

We say that a logic (or language) $\mathcal{L}$ is expressively complete for a class of properties $\mathcal{C}$ :iff

## Expressive Completeness

OBS: In what follows, we fix a finite set of propositional letters $\mathbf{P}$.

## Definition

- A pointed state model is a pair $(M, s)$ where $M$ is a model over $\mathbf{P}$ and $s$ is a state on $M$. - A (state) property is a class of pointed state models $\{(M, s)\}$
- For a formula $\phi$, we define its state property as $\|\phi\|:=\{(M, s) \mid M, s \models \phi\}$.


## Definition (Expressive Completeness)

We say that a logic (or language) $\mathcal{L}$ is expressively complete for a class of properties $\mathcal{C}$ :iff

## Expressive Completeness

OBS: In what follows, we fix a finite set of propositional letters $\mathbf{P}$.

## Definition

- A pointed state model is a pair $(M, s)$ where $M$ is a model over $\mathbf{P}$ and $s$ is a state on $M$.
- A (state) property is a class of pointed state models $\{(M, s)\}$.
- For a formula $\phi$, we define its state property as $\|\phi\|:=\{(M, s) \mid M, s \models \phi\}$


## Definition (Expressive Completeness)

We say that a logic (or language) $\mathcal{L}$ is expressively complete for a class of properties $\mathcal{C}$ :iff

## Expressive Completeness

OBS: In what follows, we fix a finite set of propositional letters $\mathbf{P}$.

## Definition

- A pointed state model is a pair $(M, s)$ where $M$ is a model over $\mathbf{P}$ and $s$ is a state on $M$.
- A (state) property is a class of pointed state models $\{(M, s)\}$.
- For a formula $\phi$, we define its state property as $\|\phi\|:=\{(M, s) \mid M, s \models \phi\}$.


## Definition (Expressive Completeness)

We say that a logic (or language) $\mathcal{L}$ is expressively complete for a class of properties $\mathcal{C}$ :iff

## Expressive Completeness

OBS: In what follows, we fix a finite set of propositional letters $\mathbf{P}$.

## Definition

- A pointed state model is a pair $(M, s)$ where $M$ is a model over $\mathbf{P}$ and $s$ is a state on $M$.
- A (state) property is a class of pointed state models $\{(M, s)\}$.
- For a formula $\phi$, we define its state property as $\|\phi\|:=\{(M, s) \mid M, s \models \phi\}$.


## Definition (Expressive Completeness)

We say that a logic (or language) $\mathcal{L}$ is expressively complete for a class of properties $\mathcal{C}$ :iff

$$
\|\mathcal{L}\|:=\{\|\phi\| \mid \phi \in \mathcal{L}\}=\mathcal{C}
$$

## Definition (Closure properties)

## We say that

$\phi$ is downward closed
$\phi$ is union closed $\phi$ has the empty state property $\phi$ is flat
iff
iff iff
iff
$[M, s \models \phi$ and $t \subseteq s] \Longrightarrow M, t \models \phi$
$[M, s \models \phi$ for all $s \in S \neq \varnothing] \Longrightarrow M, \bigcup S \models \phi$ $M, \varnothing \vDash \phi$ for all $M$
$M, s \models \phi \Longleftrightarrow M,\{w\} \models \phi$ for all $w \in s$

## Observe: flat $\Longleftrightarrow$ downward closed \& union closed \& empty state property

And observe: For formulas $\alpha$ in classical modal logic ML (no NE):

Proposition

## Definition (Closure properties)

## We say that

$\phi$ is downward closed
$\phi$ is union closed
$\phi$ has the empty state property
$\phi$ is flat
iff

iff
iff
$[M, s \models \phi$ and $t \subseteq s] \Longrightarrow M, t \models \phi$
$[M, s \models \phi$ for all $s \in S \neq \varnothing] \Longrightarrow M, \bigcup S \models \phi$ $M, \varnothing \models \phi$ for all $M$
$M, s \models \phi \Longleftrightarrow M,\{w\} \models \phi$ for all $w \in s$

Observe: flat $\Longleftrightarrow$ downward closed \& union closed \& empty state property

## And observe: For formulas $\alpha$ in classical modal logic ML (no NE):

Proposition

## Definition (Closure properties)

## We say that

$\phi$ is downward closed
iff
$[M, s \models \phi$ and $t \subseteq s] \Longrightarrow M, t \models \phi$
$\phi$ is union closed
$\phi$ has the empty state property
$\phi$ is flat
iff
iff
iff

$$
\begin{aligned}
& {[M, s \models \phi \text { for all } s \in S \neq \varnothing] \Longrightarrow M, \bigcup S \models \phi} \\
& M, \varnothing \models \phi \text { for all } M \\
& M, s \models \phi \Longleftrightarrow M,\{w\} \models \phi \text { for all } w \in s
\end{aligned}
$$

Observe: flat $\Longleftrightarrow$ downward closed \& union closed \& empty state property
And observe: For formulas $\alpha$ in classical modal logic ML (no NE):

$$
s \models \alpha \Longleftrightarrow \forall w \in s:\{w\} \models \alpha \Longleftrightarrow \forall w \in s: w \models \alpha
$$

Proposition

## Definition (Closure properties)

We say that
$\phi$ is downward closed
iff
$[M, s \models \phi$ and $t \subseteq s] \Longrightarrow M, t \models \phi$
$\phi$ is union closed
$\phi$ has the empty state property
$[M, s \models \phi$ for all $s \in S \neq \varnothing] \Longrightarrow M, \bigcup S \models \phi$
$\phi$ is flat
iff

$$
M, s \models \phi \Longleftrightarrow M,\{w\} \models \phi \text { for all } w \in s
$$

Observe: flat $\Longleftrightarrow$ downward closed \& union closed \& empty state property
And observe: For formulas $\alpha$ in classical modal logic ML (no NE):

$$
s \models \alpha \Longleftrightarrow \forall w \in s:\{w\} \models \alpha \Longleftrightarrow \forall w \in s: w \models \alpha
$$

Proposition

$$
\{\|\phi\| \mid \phi \in \mathbf{M L}\}
$$

\{property $\mathcal{P} \mid \mathcal{P}$ is flat and invariant under bounded bisimulation \}

## State $k$-bisimulation:

$$
\begin{aligned}
& s \rightleftharpoons_{k} s^{\prime}: \Longleftrightarrow \\
& \quad \text { forth: } \forall w \in s: \exists w^{\prime} \in s^{\prime}: w \rightleftharpoons_{k} w^{\prime} \\
& \quad \text { back: } \forall w^{\prime} \in s^{\prime}: \exists w \in s: w \rightleftharpoons_{k} w^{\prime}
\end{aligned}
$$

Observe: $s \rightleftharpoons_{k} s^{\prime} \quad \Longrightarrow \quad s \equiv{ }^{k} s^{\prime}$


## Definition

We say that a property $\mathcal{P}$ is invariant under bounded bisimulation siff it is invariant under $k$-bisimulation for some $k \in \omega$

## Fact

Restricting to our finite set of propositional letters $\mathbf{P}$, for any world $w \in M$, we can define Hintikka formulas $\chi_{w}^{k} \in$ ML s.t. for all $w^{\prime}$ :

$$
w^{\prime} \models \chi_{w}^{k} \Longleftrightarrow w \rightleftharpoons_{k} w^{\prime}
$$

Thus, for any team $t$, we can define formulas $\chi_{t}^{k}:=\bigvee_{w \in t} \chi_{w}^{k}$ s.t.

$$
t^{\prime} \models \chi_{t}^{k} \Longleftrightarrow t^{\prime} \subseteq s \rightleftharpoons_{k} t
$$

State k-bisimulation:

$$
\begin{aligned}
& s \rightleftharpoons_{k} s^{\prime}: \Longleftrightarrow \\
& \quad \text { forth: } \forall w \in s: \exists w^{\prime} \in s^{\prime}: w \rightleftharpoons_{k} w^{\prime} \\
& \quad \text { back: } \forall w^{\prime} \in s^{\prime}: \exists w \in s: w \rightleftharpoons_{k} w^{\prime}
\end{aligned}
$$

Observe: $s \rightleftharpoons_{k} s^{\prime} \quad \Longrightarrow \quad s \equiv{ }^{k} s^{\prime}$


## Definition

We say that a property $\mathcal{P}$ is invariant under bounded bisimulation :iff it is invariant under $k$-bisimulation for some $k \in \omega$.

## Fact

Restricting to our finite set of propositional letters $\mathbf{P}$, for any world $w \in M$, we can define Hintikka formulas $\chi_{w}^{k} \in$ ML s.t. for all $w^{\prime}$

$$
w^{\prime} \models \chi_{w}^{k} \Longleftrightarrow w \rightleftharpoons_{k} w^{\prime}
$$

Thus, for any team $t$, we can define formulas $\chi_{t}^{k}:=\bigvee_{w \in t} \chi_{w}^{k}$ s.t.

$$
t^{\prime} \models \chi_{t}^{k} \Longleftrightarrow t^{\prime} \subseteq s \rightleftharpoons_{k} t
$$

## State k-bisimulation:

$$
\begin{aligned}
& s \rightleftharpoons_{k} s^{\prime}: \Longleftrightarrow \\
& \quad \text { forth: } \\
& \quad \text { back: } \forall w \in s: \exists w^{\prime} \in s^{\prime}: \exists w \in s: w{s^{\prime}}^{\prime}: w w_{k}^{\prime} \\
&
\end{aligned}
$$

Observe: $s \rightleftharpoons_{k} s^{\prime} \quad \Longrightarrow \quad s \equiv^{k} s^{\prime}$

## Definition

We say that a property $\mathcal{P}$ is invariant under bounded bisimulation :iff it is invariant under $k$-bisimulation for some $k \in \omega$.

## Fact

Restricting to our finite set of propositional letters $\mathbf{P}$, for any world $w \in M$, we can define Hintikka formulas $\chi_{w}^{k} \in$ ML s.t. for all $w^{\prime}$ :

$$
w^{\prime} \vDash \chi_{w}^{k} \Longleftrightarrow w \rightleftharpoons_{k} w^{\prime}
$$

Thus, for any team $t$, we can define formulas $\chi_{t}^{k}:=V_{w \in t} \chi_{w}^{k}$ s.t.

## State k-bisimulation:

$$
\begin{aligned}
& s \rightleftharpoons_{k} s^{\prime}: \Longleftrightarrow \\
& \quad \text { forth: } \\
& \quad \text { back: } \forall w \in s: \exists w^{\prime} \in s^{\prime}: \exists w \in s: w c_{k}^{\prime}: w w^{\prime} \\
&
\end{aligned}
$$

Observe: $s \rightleftharpoons_{k} s^{\prime} \quad \Longrightarrow \quad s \equiv^{k} s^{\prime}$

## Definition

We say that a property $\mathcal{P}$ is invariant under bounded bisimulation :iff it is invariant under $k$-bisimulation for some $k \in \omega$.

## Fact

Restricting to our finite set of propositional letters $\mathbf{P}$, for any world $w \in M$, we can define Hintikka formulas $\chi_{w}^{k} \in$ ML s.t. for all $w^{\prime}$ :

$$
w^{\prime} \vDash \chi_{w}^{k} \Longleftrightarrow w \rightleftharpoons_{k} w^{\prime}
$$

Thus, for any team $t$, we can define formulas $\chi_{t}^{k}:=\bigvee_{w \in t} \chi_{w}^{k}$ s.t.

$$
t^{\prime} \models \chi_{t}^{k} \Longleftrightarrow t^{\prime} \subseteq s \rightleftharpoons_{k} t
$$

## Theorem（Aloni，Anttila，Yang［2023］）

$\left\|\mathcal{B S} \mathcal{M} \mathcal{L}^{\mathbb{V}}\right\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is invariant under bounded bisimulation $\}$
and
$\left\|\mathcal{B S M} \mathcal{M}{ }^{\varnothing}\right\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is union closed and invariant under bounded bisimulation $\}$

## Definition

We say that a formula $\phi$ is convex ：iff

Theorem（expressive completeness of BSML）
$\|\mathcal{B S M L}\|=$ \｛property $\mathcal{P} \mid \mathcal{P}$ is convex，union closed and invariant under bounded bisimulation\}

## Theorem (Aloni, Anttila, Yang [2023])

$\left\|\mathcal{B S} \mathcal{M} \mathcal{L}^{\mathbb{V}}\right\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is invariant under bounded bisimulation $\}$
and
$\left\|\mathcal{B S M} \mathcal{M}{ }^{\ominus}\right\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is union closed and invariant under bounded bisimulation $\}$

## Definition

We say that a formula $\phi$ is convex :iff

$$
\text { if } t \vDash \phi, t^{\prime \prime} \vDash \phi \text { and } t \subseteq t^{\prime} \subseteq t^{\prime \prime} \text {, then } t^{\prime} \vDash \phi \text {. }
$$

## Theorem (expressive completeness of BSML)

$\|\mathcal{B S M L}\|=$ \{property $\mathcal{P} \mid \mathcal{P}$ is convex, union closed and invariant under bounded bisimulation\}

## Theorem (Aloni, Anttila, Yang [2023])

$\left\|\mathcal{B S} \mathcal{M} \mathcal{L}^{\mathbb{V}}\right\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is invariant under bounded bisimulation $\}$
and
$\left\|\mathcal{B S M} \mathcal{M}{ }^{\ominus}\right\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is union closed and invariant under bounded bisimulation $\}$

## Definition

We say that a formula $\phi$ is convex :iff

$$
\text { if } t \models \phi, t^{\prime \prime} \models \phi \text { and } t \subseteq t^{\prime} \subseteq t^{\prime \prime} \text {, then } t^{\prime} \models \phi \text {. }
$$

Theorem (expressive completeness of BSML)
$\|\mathcal{B S M} \mathcal{L}\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is convex, union closed and invariant under bounded bisimulation $\}$

Theorem (expressive completeness of BSML)
$\|\mathcal{B S M} \mathcal{L}\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is convex, union closed and invariant under bounded bisimulation $\}$

## Proof

Bounded bisimulation:
Union closure:
Convexity: By induction, *see blackboard*
' $\supseteq$ ': Let $\mathcal{P}$ be an arbitrary convex, union closed property invariant under $k$-bisimulation.

- If there is some $(M, \varnothing) \in \mathcal{P}$, then by invariance under $k$-bisimulation, $\mathcal{P}$ has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find $\phi \in \mathrm{ML} \subseteq$ BSML s.t. $\|\phi\|=\mathcal{P}$.
- If not, take representatives $t_{1}, \ldots, t_{n}$ of $k$-bis. equivalence classes and consider the following formula:

$$
\varphi_{\mathcal{P}}^{k}:=\bigvee\left(\left\{N E \wedge\left(\chi_{w_{1}}^{k} \vee \cdots \vee \chi_{w_{n}}^{k}\right) \mid\left(w_{1}, \ldots, w_{n}\right) \in\left(t_{1} \times \cdots \times t_{n}\right)\right\}\right)
$$

We claim that $\left\|\varphi_{\mathcal{P}}^{k}\right\|=\mathcal{P}$. *See blackboard*

Theorem (expressive completeness of BSML)
$\|\mathcal{B S M} \mathcal{L}\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is convex, union closed and invariant under bounded bisimulation $\}$

## Proof.

## ' $\subseteq$ ': Bounded bisimulation:

Union closure:
Convexity: By induction, *see blackboard*
Let $\mathcal{P}$ be an arbitrary convex, union closed property invariant under $k$-bisimulation

- If there is some $(M, \varnothing) \in \mathcal{P}$, then by invariance under $k$-bisimulation, $\mathcal{P}$ has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find $\phi \in \mathrm{ML} \subseteq$ BSML s.t. $\|\phi\|=\mathcal{P}$
- If not, take representatives $t_{1}, \ldots, t_{n}$ of $k$-bis. equivalence classes and consider the following formula


We claim that $\left\|\varphi_{\mathcal{P}}^{k}\right\|=\mathcal{P}$. *See blackboard*

Theorem (expressive completeness of BSML)
$\|\mathcal{B S M} \mathcal{L}\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is convex, union closed and invariant under bounded bisimulation $\}$

## Proof.

' $\subseteq$ ': Bounded bisimulation:
Union closure:
Convexity: By induction, *see blackboard*
Let $\mathcal{P}$ be an arbitrary convex, union closed property invariant under $k$-bisimulation.

- If there is some $(M, \varnothing) \in \mathcal{P}$, then by invariance under $k$-bisimulation, $\mathcal{P}$ has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find $\phi \in$ ML $\subseteq$ BSML s.t. $\|\phi\|=\mathcal{P}$
- If not, take representatives $t_{1}, \ldots, t_{n}$ of $k$-bis. equivalence classes and consider the following formula


We claim that $\left\|\varphi_{\mathcal{P}}^{k}\right\|=\mathcal{P}$. *See blackboard*

Theorem (expressive completeness of BSML)
$\|\mathcal{B S M} \mathcal{L}\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is convex, union closed and invariant under bounded bisimulation $\}$

## Proof.

' $\subseteq$ ': Bounded bisimulation:
Union closure: $\checkmark$
Convexity: By induction, *see blackboard*
Let $\mathcal{P}$ be an arbitrary convex, union closed property invariant under $k$-bisimulation.

- If there is some $(M, \varnothing) \in \mathcal{P}$, then by invariance under $k$-bisimulation, $\mathcal{P}$ has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find $\phi \in \mathrm{ML} \subseteq \mathrm{BSML}$ s.t. $\| \phi=\mathcal{P}$

If not, take representatives $t_{1}, \ldots, t_{n}$ of $k$-bis. equivalence classes and consider the following formula:


We claim that $\left\|\varphi_{\mathcal{P}}^{k}\right\|=\mathcal{P}$. *See blackboard*

Theorem (expressive completeness of BSML)
$\|\mathcal{B S M} \mathcal{L}\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is convex, union closed and invariant under bounded bisimulation $\}$

## Proof.

' $\subseteq$ ': Bounded bisimulation:
Union closure: $\checkmark$
Convexity: By induction, *see blackboard*
' $\supseteq$ ': Let $\mathcal{P}$ be an arbitrary convex, union closed property invariant under $k$-bisimulation.

- If there is some $(M, \varnothing) \in \mathcal{P}$, then by invariance under $k$-bisimulation, $\mathcal{P}$ has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find $\phi \in \mathrm{ML} \subseteq B S M L$ s.t. $\|\phi\|=\mathcal{P}$
- If not, take representatives $t_{1}, \ldots, t_{n}$ of $k$-bis. equivalence classes and consider the following formula

Theorem (expressive completeness of BSML)
$\|\mathcal{B S M} \mathcal{L}\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is convex, union closed and invariant under bounded bisimulation $\}$

## Proof.

' $\subseteq$ ': Bounded bisimulation:
Union closure: $\checkmark$
Convexity: By induction, *see blackboard*
' $\supseteq$ ': Let $\mathcal{P}$ be an arbitrary convex, union closed property invariant under $k$-bisimulation.

- If there is some $(M, \varnothing) \in \mathcal{P}$, then by invariance under $k$-bisimulation, $\mathcal{P}$ has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find $\phi \in M L \subseteq B S M L$ s.t. $\|\phi\|=\mathcal{P}$.
- If not, take representatives $t_{1}, \ldots, t_{n}$ of $k$-bis. equivalence classes and consider the following formula


Theorem (expressive completeness of BSML)
$\|\mathcal{B S M} \mathcal{L}\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is convex, union closed and invariant under bounded bisimulation $\}$

## Proof.

' $\subseteq$ ': Bounded bisimulation:
Union closure: $\checkmark$
Convexity: By induction, *see blackboard*
' $\supseteq$ ': Let $\mathcal{P}$ be an arbitrary convex, union closed property invariant under $k$-bisimulation.

- If there is some $(M, \varnothing) \in \mathcal{P}$, then by invariance under $k$-bisimulation, $\mathcal{P}$ has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find $\phi \in M L \subseteq B S M L$
- If not, take representatives $t_{1}, \ldots, t_{n}$ of $k$-bis. equivalence classes and consider the following formula:

Theorem (expressive completeness of BSML)
$\|\mathcal{B S M} \mathcal{L}\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is convex, union closed and invariant under bounded bisimulation $\}$

## Proof.

' $\subseteq$ ': Bounded bisimulation:
Union closure: $\checkmark$
Convexity: By induction, *see blackboard*
' $\supseteq$ ': Let $\mathcal{P}$ be an arbitrary convex, union closed property invariant under $k$-bisimulation.

- If there is some $(M, \varnothing) \in \mathcal{P}$, then by invariance under $k$-bisimulation, $\mathcal{P}$ has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find $\phi \in$ ML $\subseteq$ BSML s.t. $\|\phi\|=\mathcal{P}$.
- If not, take representatives $t_{1}, \ldots, t_{n}$ of $k$-bis. equivalence classes and consider the following formula

Theorem (expressive completeness of BSML)
$\|\mathcal{B S M L}\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is convex, union closed and invariant under bounded bisimulation $\}$

## Proof.

' $\subseteq$ ': Bounded bisimulation:
Union closure: $\checkmark$
Convexity: By induction, *see blackboard*
' $\supseteq$ ': Let $\mathcal{P}$ be an arbitrary convex, union closed property invariant under $k$-bisimulation.

- If there is some $(M, \varnothing) \in \mathcal{P}$, then by invariance under $k$-bisimulation, $\mathcal{P}$ has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find $\phi \in$ ML $\subseteq$ BSML s.t. $\|\phi\|=\mathcal{P}$.
- If not, take representatives $t_{1}, \ldots, t_{n}$ of $k$-bis. equivalence classes and consider the following formula:



## Theorem (expressive completeness of BSML)

$\|\mathcal{B S M} \mathcal{L}\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is convex, union closed and invariant under bounded bisimulation $\}$

## Proof.

' $\subseteq$ ': Bounded bisimulation:
Union closure: $\checkmark$
Convexity: By induction, *see blackboard*
' $\supseteq$ ': Let $\mathcal{P}$ be an arbitrary convex, union closed property invariant under $k$-bisimulation.

- If there is some $(M, \varnothing) \in \mathcal{P}$, then by invariance under $k$-bisimulation, $\mathcal{P}$ has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find $\phi \in$ ML $\subseteq$ BSML s.t. $\|\phi\|=\mathcal{P}$.
- If not, take representatives $t_{1}, \ldots, t_{n}$ of $k$-bis. equivalence classes and consider the following formula:

$$
\varphi_{\mathcal{P}}^{k}:=\bigvee\left(\left\{N E \wedge\left(\chi_{w_{1}}^{k} \vee \cdots \vee \chi_{w_{n}}^{k}\right) \mid\left(w_{1}, \ldots, w_{n}\right) \in\left(t_{1} \times \cdots \times t_{n}\right)\right\}\right)
$$

## Theorem (expressive completeness of BSML)

$\|\mathcal{B S M} \mathcal{L}\|=\{$ property $\mathcal{P} \mid \mathcal{P}$ is convex, union closed and invariant under bounded bisimulation $\}$

## Proof.

' $\subseteq$ ': Bounded bisimulation:
Union closure: $\checkmark$
Convexity: By induction, *see blackboard*
' $\supseteq$ ': Let $\mathcal{P}$ be an arbitrary convex, union closed property invariant under $k$-bisimulation.

- If there is some $(M, \varnothing) \in \mathcal{P}$, then by invariance under $k$-bisimulation, $\mathcal{P}$ has the empty state property. So by convexity, it is downwards closed, hence flat. Thus, we can find $\phi \in$ ML $\subseteq$ BSML s.t. $\|\phi\|=\mathcal{P}$.
- If not, take representatives $t_{1}, \ldots, t_{n}$ of $k$-bis. equivalence classes and consider the following formula:

$$
\varphi_{\mathcal{P}}^{k}:=\bigvee\left(\left\{N E \wedge\left(\chi_{w_{1}}^{k} \vee \cdots \vee \chi_{w_{n}}^{k}\right) \mid\left(w_{1}, \ldots, w_{n}\right) \in\left(t_{1} \times \cdots \times t_{n}\right)\right\}\right)
$$

We claim that $\left\|\varphi_{\mathcal{P}}^{k}\right\|=\mathcal{P}$. ${ }^{*}$ See blackboard*

## Recap and normal form

- We have shown that BSML is expressively complete for all convex, union-closed properties.
- We have obtained a normal form for BSML-formulas $\phi$, namely of the form
- Or, in fact, equivalently
where the former conjunct is flat and the latter is upwards closed.


## Recap and normal form

- We have shown that BSML is expressively complete for all convex, union-closed properties.
- We have obtained a normal form for BSML-formulas $\phi$, namely of the form

$$
\varphi_{\mathcal{P}}^{k}:=\bigvee\left(\left\{N E \wedge\left(\chi_{w_{1}}^{k} \vee \cdots \vee \chi_{w_{n}}^{k}\right) \mid\left(w_{1}, \ldots, w_{n}\right) \in\left(t_{1} \times \cdots \times t_{n}\right)\right\}\right)
$$

- Or, in fact, equivalently:
where the former conjunct is flat and the latter is upwards closed.


## Recap and normal form

- We have shown that BSML is expressively complete for all convex, union-closed properties.
- We have obtained a normal form for BSML-formulas $\phi$, namely of the form

$$
\varphi_{\mathcal{P}}^{k}:=\bigvee\left(\left\{N E \wedge\left(\chi_{w_{1}}^{k} \vee \cdots \vee \chi_{w_{n}}^{k}\right) \mid\left(w_{1}, \ldots, w_{n}\right) \in\left(t_{1} \times \cdots \times t_{n}\right)\right\}\right)
$$

- Or, in fact, equivalently:

$$
\bigvee_{t \in \mathcal{P}} \chi_{t}^{k} \wedge \bigwedge\left\{\left(\left(\chi_{w_{1}}^{k} \vee \chi_{w_{2}}^{k} \vee \ldots \vee \chi_{w_{n}}^{k}\right) \wedge \mathrm{NE}\right) \vee \pi \mid\left(w_{1}, \ldots, w_{n}\right) \in\left(t_{1} \times \cdots \times t_{n}\right)\right\}
$$

where the former conjunct is flat and the latter is upwards closed.

## Updated picture:



## Updated picture：



## Updated picture:



What logic is expressively complete for convex properties (without the empty team property)? Note:
$\phi$ is convex and has the empty team property $\Longleftrightarrow$ $\phi$ is downward closed and has the empty team property

So ML(= $(\cdot))$ is expressively complete for convex properties with the empty team property:

Examples of convex sentences/formulas which are not union closed:
Between five and ten bananas are yellow.

$$
(q \vee \neg q) \wedge((r \wedge \text { NE }) \vee \pi)(\text { where } \pi:=(p \vee \neg p)
$$

Recall the following characteristic formulas for convex union-closed properties:
If $\mathcal{P} \neq \varnothing$ :

$$
\bigvee_{s \in \mathcal{P}} \chi_{s}^{k} \wedge \bigwedge\left\{\left(\left(\chi_{w_{1}}^{k} \vee \chi_{w_{2}}^{k} \vee \ldots \vee \chi_{n}^{k}\right) \wedge \text { NE }\right) \vee \pi \mid\left(w_{1}, \ldots, w_{n}\right) \in\left(s_{1} \times \cdots \times s_{n}\right)\right\}
$$

which we may write:
$\bigvee_{s \in \mathcal{P}} \chi_{s}^{k} \wedge \bigwedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)$
If $\mathcal{P}=\varnothing$ :
$\perp \wedge \mathrm{NE}$
where $\mathcal{P} \rightleftharpoons_{k}\left\{s_{1}, \ldots, s_{n}\right\}$. The first conjunct in the non-empty characteristic formula is a characteristic formula for flat properties, and the second for upward-closed properties.

Recall the following characteristic formulas for convex union-closed properties:
If $\mathcal{P} \neq \varnothing: \quad \bigvee_{s \in \mathcal{P}} \chi_{s}^{k} \wedge \bigwedge\left\{\left(\left(\chi_{w_{1}}^{k} \vee \chi_{w_{2}}^{k} \vee \ldots \vee \chi_{n}^{k}\right) \wedge \mathrm{NE}\right) \vee \pi \mid\left(w_{1}, \ldots, w_{n}\right) \in\left(s_{1} \times \cdots \times s_{n}\right)\right\}$
which we may write: $\bigvee_{s \in \mathcal{P}} \chi_{s}^{k} \wedge \bigwedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)$
If $\mathcal{P}=\varnothing: \quad \quad \perp \wedge \mathrm{NE}$
where $\mathcal{P} \rightleftharpoons_{k}\left\{s_{1}, \ldots, s_{n}\right\}$. The first conjunct in the non-empty characteristic formula is a characteristic formula for flat properties, and the second for upward-closed properties.

To get a characteristic formula for (non-empty) convex properties, simply replace the first conjunct with a characteristic formula for downward-closed properties:

$$
\bigvee_{s \in \mathcal{P}} \chi_{s}^{k} \wedge \bigwedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)
$$

## Proposition

For any non-empty convex $\mathcal{P}$ invariant under $\rightleftharpoons_{k}$ :

$$
t \in \mathcal{P} \Longleftrightarrow t \models \bigvee_{s \in \mathcal{P}} \chi_{s}^{k} \wedge \bigwedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)
$$

## Proposition

For any non-empty convex $\mathcal{P}$ invariant under $\rightleftharpoons_{k}$ :

$$
t \in \mathcal{P} \Longleftrightarrow t \vDash \bigvee_{s \in \mathcal{P}} \chi_{s}^{k} \wedge \bigwedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)
$$

Proof.
$\Longrightarrow$ : Clearly $t \vDash \chi_{t}^{k}$ so $t \models \mathbb{V}_{s \in \mathcal{P}} \chi_{s}^{k}$.

## Proposition

For any non－empty convex $\mathcal{P}$ invariant under $\rightleftharpoons_{k}$ ：

$$
t \in \mathcal{P} \Longleftrightarrow t \vDash \bigvee_{s \in \mathcal{P}} \chi_{s}^{k} \wedge \bigwedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)
$$

## Proof．

$\Longrightarrow$ ：Clearly $t \models \chi_{t}^{k}$ so $t \models \mathbb{V}_{s \in \mathcal{P}} \chi_{s}^{k}$ ．If $\mathcal{P}$ has the empty team property，$\Pi \mathcal{P}=\varnothing$ so the second conjunct is $\pi$ and we are done．Otherwise let $u \in \Pi \mathcal{P}$ ．For some $w \in u$ we have $w \in t$ ，so $t \vDash\left(\chi_{w}^{k} \wedge N E\right) \vee \pi$ ．Therefore also $t \models\left(\left(\chi_{w} \vee \vee_{v \in u \backslash\{w\}} \chi_{v}^{k}\right) \wedge \mathrm{NE}\right) \vee \pi$ whence $t \models\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi$ ．

## Proposition

For any non－empty convex $\mathcal{P}$ invariant under $\rightleftharpoons_{k}$ ：

$$
t \in \mathcal{P} \Longleftrightarrow t \vDash \bigvee_{s \in \mathcal{P}} \chi_{s}^{k} \wedge \bigwedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)
$$

## Proof．

$\Longrightarrow$ ：Clearly $t \models \chi_{t}^{k}$ so $t \models \mathbb{V}_{s \in \mathcal{P}} \chi_{s}^{k}$ ．If $\mathcal{P}$ has the empty team property，$\Pi \mathcal{P}=\varnothing$ so the second conjunct is $\pi$ and we are done．Otherwise let $u \in \Pi \mathcal{P}$ ．For some $w \in u$ we have $w \in t$ ，so $t \vDash\left(\chi_{w}^{k} \wedge N E\right) \vee \pi$ ．Therefore also $t \models\left(\left(\chi_{w} \vee \vee_{v \in u \backslash\{w\}} \chi_{v}^{k}\right) \wedge \mathrm{NE}\right) \vee \pi$ whence $t \models\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi$ ．
$\Longleftarrow: ~ B y ~ t \models \bigvee_{s \in \mathcal{P}} \chi_{s}^{k}$ there is some $s \in \mathcal{P}$ s．t．$t \rightleftharpoons_{k} s^{\prime} \subseteq s$ ．

## Proposition

For any non－empty convex $\mathcal{P}$ invariant under $\rightleftharpoons_{k}$ ：

$$
t \in \mathcal{P} \Longleftrightarrow t \vDash \bigvee_{s \in \mathcal{P}} \chi_{s}^{k} \wedge \bigwedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)
$$

## Proof．

$\Longrightarrow$ ：Clearly $t \models \chi_{t}^{k}$ so $t \models \mathbb{V}_{s \in \mathcal{P}} \chi_{s}^{k}$ ．If $\mathcal{P}$ has the empty team property，$\Pi \mathcal{P}=\varnothing$ so the second conjunct is $\pi$ and we are done．Otherwise let $u \in \Pi \mathcal{P}$ ．For some $w \in u$ we have $w \in t$ ，so $t \vDash\left(\chi_{w}^{k} \wedge N E\right) \vee \pi$ ．Therefore also $t \models\left(\left(\chi_{w} \vee \vee_{v \in u \backslash\{w\}} \chi_{v}^{k}\right) \wedge \mathrm{NE}\right) \vee \pi$ whence $t \models\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi$ ．
$\Longleftarrow: ~ B y ~ t \models \bigvee_{s \in \mathcal{P}} \chi_{s}^{k}$ there is some $s \in \mathcal{P}$ s．t．$t \rightleftharpoons_{k} s^{\prime} \subseteq s$ ．
Claim：by $t \models \bigwedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)$ there is some $y \in \mathcal{P}$ s．t．$y \rightleftharpoons_{k} t^{\prime} \subseteq t$ ．Assume for contradiction that $\forall s \in \mathcal{P}: \exists w_{s} \in s: \nexists v \in t: w_{s} \rightleftharpoons_{k} v$（i．e．，$\forall s \in \mathcal{P}: s \nsubseteq t$ ，in modal terms）．

## Proposition

For any non－empty convex $\mathcal{P}$ invariant under $\rightleftharpoons_{k}$ ：

$$
t \in \mathcal{P} \Longleftrightarrow t \vDash \bigvee_{s \in \mathcal{P}} \chi_{s}^{k} \wedge \bigwedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)
$$

## Proof．

$\Longrightarrow$ ：Clearly $t \models \chi_{t}^{k}$ so $t \models \mathbb{V}_{s \in \mathcal{P}} \chi_{s}^{k}$ ．If $\mathcal{P}$ has the empty team property，$\Pi \mathcal{P}=\varnothing$ so the second conjunct is $\pi$ and we are done．Otherwise let $u \in \Pi \mathcal{P}$ ．For some $w \in u$ we have $w \in t$ ，so $t \vDash\left(\chi_{w}^{k} \wedge N E\right) \vee \pi$ ．Therefore also $t \models\left(\left(\chi_{w} \vee \vee_{v \in u \backslash\{w\}} \chi_{v}^{k}\right) \wedge \mathrm{NE}\right) \vee \pi$ whence $t \models\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi$ ．
$\Longleftarrow: ~ B y ~ t \models \bigvee_{s \in \mathcal{P}} \chi_{s}^{k}$ there is some $s \in \mathcal{P}$ s．t．$t \rightleftharpoons_{k} s^{\prime} \subseteq s$ ．
Claim：by $t \vDash \wedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)$ there is some $y \in \mathcal{P}$ s．t．$y \rightleftharpoons_{k} t^{\prime} \subseteq t$ ．Assume for contradiction that $\forall s \in \mathcal{P}: \exists w_{s} \in s: \nexists v \in t: w_{s} \rightleftharpoons_{k} v$（i．e．，$\forall s \in \mathcal{P}: s \nsubseteq t$ ，in modal terms）．Then $\left\{w_{s} \mid s \in \mathcal{P}\right\} \in \Pi \mathcal{P}$ so $t \vDash\left(\left(\bigvee_{\left\{w_{s} \mid s \in \mathcal{P}\right\}} \chi_{w_{s}}^{k}\right) \wedge N E\right) \vee \pi$ ．

## Proposition

For any non－empty convex $\mathcal{P}$ invariant under $\rightleftharpoons_{k}$ ：

$$
t \in \mathcal{P} \Longleftrightarrow t \vDash \bigvee_{s \in \mathcal{P}} \chi_{s}^{k} \wedge \bigwedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)
$$

## Proof．

$\Longrightarrow$ ：Clearly $t \models \chi_{t}^{k}$ so $t \models \mathbb{V}_{s \in \mathcal{P}} \chi_{s}^{k}$ ．If $\mathcal{P}$ has the empty team property，$\Pi \mathcal{P}=\varnothing$ so the second conjunct is $\pi$ and we are done．Otherwise let $u \in \Pi \mathcal{P}$ ．For some $w \in u$ we have $w \in t$ ，so $t \models\left(\chi_{w}^{k} \wedge N E\right) \vee \pi$ ．Therefore also $t \models\left(\left(\chi_{w} \vee \vee_{v \in u \backslash\{w\}} \chi_{v}^{k}\right) \wedge\right.$ NE $) \vee \pi$ whence $t \vDash\left(\chi_{u}^{k} \wedge\right.$ NE $) \vee \pi$ ．
$\Longleftarrow: ~ B y ~ t \models \bigvee_{s \in \mathcal{P}} \chi_{s}^{k}$ there is some $s \in \mathcal{P}$ s．t．$t \rightleftharpoons_{k} s^{\prime} \subseteq s$ ．
Claim：by $t \vDash \wedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)$ there is some $y \in \mathcal{P}$ s．t．$y \rightleftharpoons_{k} t^{\prime} \subseteq t$ ．Assume for contradiction that $\forall s \in \mathcal{P}: \exists w_{s} \in s: \nexists v \in t: w_{s} \rightleftharpoons_{k} v$（i．e．，$\forall s \in \mathcal{P}: s \nsubseteq t$ ，in modal terms）．Then $\left\{w_{s} \mid s \in \mathcal{P}\right\} \in \Pi \mathcal{P}$ so $t \vDash\left(\left(\vee_{\left\{w_{s} \mid s \in \mathcal{P}\right\}} \chi_{w_{s}}^{k}\right) \wedge N E\right) \vee \pi$ ．But then for some $s \in \mathcal{P}$ we have $t \models\left(\chi_{w_{s}}^{k} \wedge N E\right) \vee \pi$ so for some $v \in t: w \rightleftharpoons_{k} v$, a contradiction．

## Proposition

For any non－empty convex $\mathcal{P}$ invariant under $\rightleftharpoons_{k}$ ：

$$
t \in \mathcal{P} \Longleftrightarrow t \vDash \bigvee_{s \in \mathcal{P}} \chi_{s}^{k} \wedge \bigwedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)
$$

## Proof．

$\Longrightarrow$ ：Clearly $t \models \chi_{t}^{k}$ so $t \models \mathbb{V}_{s \in \mathcal{P}} \chi_{s}^{k}$ ．If $\mathcal{P}$ has the empty team property，$\Pi \mathcal{P}=\varnothing$ so the second conjunct is $\pi$ and we are done．Otherwise let $u \in \Pi \mathcal{P}$ ．For some $w \in u$ we have $w \in t$ ，so $t \vDash\left(\chi_{w}^{k} \wedge N E\right) \vee \pi$ ．Therefore also $t \models\left(\left(\chi_{w} \vee \vee_{v \in u \backslash\{w\}} \chi_{v}^{k}\right) \wedge \mathrm{NE}\right) \vee \pi$ whence $t \models\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi$ ．
$\Longleftarrow: ~ B y ~ t \models \bigvee_{s \in \mathcal{P}} \chi_{s}^{k}$ there is some $s \in \mathcal{P}$ s．t．$t \rightleftharpoons_{k} s^{\prime} \subseteq s$ ．
Claim：by $t \vDash \wedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)$ there is some $y \in \mathcal{P}$ s．t．$y \rightleftharpoons_{k} t^{\prime} \subseteq t$ ．Assume for contradiction that $\forall s \in \mathcal{P}: \exists w_{s} \in s: \nexists v \in t: w_{s} \rightleftharpoons_{k} v$（i．e．，$\forall s \in \mathcal{P}: s \nsubseteq t$ ，in modal terms）．Then $\left\{w_{s} \mid s \in \mathcal{P}\right\} \in \Pi \mathcal{P}$ so $t \vDash\left(\left(\vee_{\left\{w_{s} \mid s \in \mathcal{P}\right\}} \chi_{w_{s}}^{k}\right) \wedge N E\right) \vee \pi$ ．But then for some $s \in \mathcal{P}$ we have $t \vDash\left(\chi_{w_{s}}^{k} \wedge N E\right) \vee \pi$ so for some $v \in t: w \rightleftharpoons_{k} v$ ，a contradiction．So for some $y \in \mathcal{P}$ we must have $\forall w \in y: \exists v \in t: w \rightleftharpoons_{k} v$ ，i．e．，$y \rightleftharpoons_{k} t^{\prime} \subseteq t$ ．

## Proposition

For any non－empty convex $\mathcal{P}$ invariant under $\rightleftharpoons_{k}$ ：

$$
t \in \mathcal{P} \Longleftrightarrow t \vDash \bigvee_{s \in \mathcal{P}} \chi_{s}^{k} \wedge \bigwedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)
$$

## Proof．

$\Longrightarrow$ ：Clearly $t \models \chi_{t}^{k}$ so $t \models \mathbb{V}_{s \in \mathcal{P}} \chi_{s}^{k}$ ．If $\mathcal{P}$ has the empty team property，$\Pi \mathcal{P}=\varnothing$ so the second conjunct is $\pi$ and we are done．Otherwise let $u \in \Pi \mathcal{P}$ ．For some $w \in u$ we have $w \in t$ ，so $t \vDash\left(\chi_{w}^{k} \wedge N E\right) \vee \pi$ ．Therefore also $t \models\left(\left(\chi_{w} \vee \vee_{v \in u \backslash\{w\}} \chi_{v}^{k}\right) \wedge \mathrm{NE}\right) \vee \pi$ whence $t \models\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi$ ．
$\Longleftarrow: ~ B y ~ t \models \bigvee_{s \in \mathcal{P}} \chi_{s}^{k}$ there is some $s \in \mathcal{P}$ s．t．$t \rightleftharpoons_{k} s^{\prime} \subseteq s$ ．
Claim：by $t \vDash \wedge_{u \in \Pi \mathcal{P}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right)$ there is some $y \in \mathcal{P}$ s．t．$y \rightleftharpoons_{k} t^{\prime} \subseteq t$ ．Assume for contradiction that $\forall s \in \mathcal{P}: \exists w_{s} \in s: \nexists v \in t: w_{s} \rightleftharpoons_{k} v$（i．e．，$\forall s \in \mathcal{P}: s \nsubseteq t$ ，in modal terms）．Then $\left\{w_{s} \mid s \in \mathcal{P}\right\} \in \Pi \mathcal{P}$ so $t \vDash\left(\left(\vee_{\left\{w_{s} \mid s \in \mathcal{P}\right\}} \chi_{w_{s}}^{k}\right) \wedge N E\right) \vee \pi$ ．But then for some $s \in \mathcal{P}$ we have $t \vDash\left(\chi_{w_{s}}^{k} \wedge N E\right) \vee \pi$ so for some $v \in t: w \rightleftharpoons_{k} v$ ，a contradiction．So for some $y \in \mathcal{P}$ we must have $\forall w \in y: \exists v \in t: w \rightleftharpoons_{k} v$ ，i．e．，$y \rightleftharpoons_{k} t^{\prime} \subseteq t$ ． By $\rightleftharpoons_{k}$－invariance，$t^{\prime} \in \mathcal{P}$ ．$t^{\prime} \subseteq t \rightleftharpoons_{k} s^{\prime}$ ，so $t^{\prime} \rightleftharpoons_{k} s^{\prime \prime} \subseteq s^{\prime}$ whence $s^{\prime \prime} \in \mathcal{P}$ by $\rightleftharpoons_{k}$－invariance．$s^{\prime \prime} \subseteq s^{\prime} \subseteq s \in \mathcal{P}$ so $s^{\prime} \in \mathcal{P}$ by convexity．Then $t \in \mathcal{P}$ by $\rightleftharpoons_{k}$－invariance．

So we can capture all convex properties in ML(NE, v), but this is clearly not convex; e.g., $((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \vee q$ is not convex.

So we can capture all convex properties in ML(NE, v), but this is clearly not convex; e.g., $((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \vee q$ is not convex.

This is not surprising given $\mathrm{ML}(\mathrm{NE}, \mathrm{V})$ is complete for all properties, but there is a more general issue with the tensor disjunction: if $\phi$ or $\psi$ is not union closed, $\phi \vee \psi$ might not be convex:

## Fact

If a logic can express all convex properties and has the connective $v$, it is not convex.
Recall the intuitionistic implication $\rightarrow$ :

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

So we can capture all convex properties in $\mathrm{ML}(\mathrm{NE}, \mathrm{V})$, but this is clearly not convex; e.g., $((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \vee q$ is not convex.

This is not surprising given $\mathrm{ML}(\mathrm{NE}, \mathrm{V})$ is complete for all properties, but there is a more general issue with the tensor disjunction: if $\phi$ or $\psi$ is not union closed, $\phi \vee \psi$ might not be convex:

## Fact

If a logic can express all convex properties and has the connective $v$, it is not convex.
Recall the intuitionistic implication $\rightarrow$ :

$$
s \models \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \models \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \pi)$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed) and not union closed.

So we can capture all convex properties in $\mathrm{ML}(\mathrm{NE}, \mathrm{V})$, but this is clearly not convex; e.g., $((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \vee q$ is not convex.

This is not surprising given $\mathbf{M L}(\mathrm{NE}, \mathrm{v})$ is complete for all properties, but there is a more general issue with the tensor disjunction: if $\phi$ or $\psi$ is not union closed, $\phi \vee \psi$ might not be convex:

## Fact

If a logic can express all convex properties and has the connective $v$, it is not convex.
Recall the intuitionistic implication $\rightarrow$ :

$$
s \vDash \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \vDash \phi \text { implies } t \models \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \pi)$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed) and not union closed. Let $\phi:=\psi \vee \psi$. We show $\phi$ is not convex.

So we can capture all convex properties in $\mathrm{ML}(\mathrm{NE}, \mathrm{V})$, but this is clearly not convex; e.g., $((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \vee q$ is not convex.

This is not surprising given $\mathbf{M L}(\mathrm{NE}, \mathrm{v})$ is complete for all properties, but there is a more general issue with the tensor disjunction: if $\phi$ or $\psi$ is not union closed, $\phi \vee \psi$ might not be convex:

## Fact

If a logic can express all convex properties and has the connective $v$, it is not convex.
Recall the intuitionistic implication $\rightarrow$ :

$$
s \vDash \phi \rightarrow \psi \Longleftrightarrow \forall t \subseteq s: t \vDash \phi \text { implies } t \vDash \psi
$$

Consider $\psi:=(((p \wedge \mathrm{NE}) \vee(\neg p \wedge \mathrm{NE})) \rightarrow q) \wedge((r \wedge \mathrm{NE}) \vee \pi)$. It is easy to see that $\|\psi\|$ is convex (the first conjunct is downward closed; the second, upward closed) and not union closed. Let $\phi:=\psi \vee \psi$. We show $\phi$ is not convex. Let $t:=\left\{w_{p}, w_{p r}, w_{\varnothing}, w_{r}\right\}$. Then $\left\{w_{p}, w_{p r}\right\} \models \psi$ and $\left\{w, w_{r}\right\} \models \psi$ so $t \vDash \phi$. Clearly also $\left\{w_{r}\right\} \vDash \phi$. But $\left\{w_{r}, w_{p}\right\} \not \vDash \phi$ because $\left\{w_{r}\right\}$ is the only substate that makes $\psi$ true.

To obtain an expressively complete convex logic, we change the classical base of the logic.
Syntax of classical modal logic with $\rightarrow \mathrm{ML}_{\rightarrow}$ :

$$
\alpha::=p|\perp| \alpha \wedge \alpha|\alpha \rightarrow \alpha| \diamond \alpha
$$

Syntax of modal convex team logic MC:

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \rightarrow \phi| \diamond \phi \mid \nabla \phi
$$

To obtain an expressively complete convex logic, we change the classical base of the logic.
Syntax of classical modal logic with $\rightarrow \mathrm{ML}_{\rightarrow}$ :

$$
\alpha::=p|\perp| \alpha \wedge \alpha|\alpha \rightarrow \alpha| \diamond \alpha
$$

Syntax of modal convex team logic MC:

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \rightarrow \phi| \diamond \phi \mid \nabla \phi
$$

$\nabla$ is the "epistemic might" operator which has been used to formalize epistemic contradictions:

$$
s \models \nabla \phi \Longleftrightarrow \exists t \subseteq s: t \neq \varnothing \text { and } t \models \phi
$$

To obtain an expressively complete convex logic, we change the classical base of the logic.
Syntax of classical modal logic with $\rightarrow \mathrm{ML}_{\rightarrow}$ :

$$
\alpha::=p|\perp| \alpha \wedge \alpha|\alpha \rightarrow \alpha| \diamond \alpha
$$

Syntax of modal convex team logic MC:

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \rightarrow \phi| \diamond \phi \mid \nabla \phi
$$

$\nabla$ is the "epistemic might" operator which has been used to formalize epistemic contradictions:

$$
s \models \nabla \phi \Longleftrightarrow \exists t \subseteq s: t \neq \varnothing \text { and } t \models \phi
$$

Epistemic contradiction: \#It is raining but it might not be raining.
Formalized as: $r \wedge \nabla \neg r$. Contradiction: $r \wedge \nabla \neg r \vDash \Perp$.

To obtain an expressively complete convex logic, we change the classical base of the logic.
Syntax of classical modal logic with $\rightarrow \mathrm{ML}_{\rightarrow}$ :

$$
\alpha::=p|\perp| \alpha \wedge \alpha|\alpha \rightarrow \alpha| \diamond \alpha
$$

Syntax of modal convex team logic MC:

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \rightarrow \phi| \diamond \phi \mid \nabla \phi
$$

$\nabla$ is the "epistemic might" operator which has been used to formalize epistemic contradictions:

$$
s \models \nabla \phi \Longleftrightarrow \exists t \subseteq s: t \neq \varnothing \text { and } t \models \phi
$$

Epistemic contradiction: \#lt is raining but it might not be raining.
Formalized as: $r \wedge \nabla \neg r$. Contradiction: $r \wedge \nabla \neg r \vDash \Perp$.

Note that $\nabla \phi \equiv(\phi \wedge \mathrm{NE}) \vee \pi$ and that $\mathrm{NE} \equiv \nabla \pi$.

## Proposition

## MC is convex.

## Proof.

$p, \perp$ and $\diamond \phi$ are flat and and hence convex. $\phi \rightarrow \phi$ is downward closed and hence convex. $\nabla \phi$ is upward closed and hence convex. The conjunction case follows immediately from the induction hypothesis.

## Proposition

MC is convex.

## Proof.

$p, \perp$ and $\diamond \phi$ are flat and and hence convex. $\phi \rightarrow \phi$ is downward closed and hence convex. $\nabla \phi$ is upward closed and hence convex. The conjunction case follows immediately from the induction hypothesis.

By the foregoing, if MC can express the empty property, all upward-closed properties, and all downward-closed properties, it can express all convex properties.

MC can express the empty property since $t \in \mathcal{P} \Longleftrightarrow t \vDash \nabla \perp$.
MC can express all upward-closed properties since

$$
\bigwedge_{u \in \Pi_{\mathcal{P}}}\left(\left(\chi_{u}^{k} \wedge \mathrm{NE}\right) \vee \pi\right) \equiv \bigwedge_{u \in \Pi \mathcal{P}} \nabla \chi_{u}^{k}
$$

To show MC can express all downward-closed properties, we show that the global disjunction is definable for classical formulas. For $\{\alpha\}_{i \in I} \subseteq \mathbf{M L}_{\rightarrow}$ define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right) \quad \text { E.g., } \alpha \vee \beta=(\nabla \neg \alpha \rightarrow \alpha) \wedge(\nabla \neg \beta \rightarrow \beta)
$$

To show MC can express all downward-closed properties, we show that the global disjunction is definable for classical formulas. For $\{\alpha\}_{i \in I} \subseteq \mathrm{ML}_{\rightarrow}$ define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{\vee} \beta=(\nabla \neg \alpha \rightarrow \alpha) \wedge(\nabla \neg \beta \rightarrow \beta)
$$

## Lemma

$t \vDash \mathbb{V}_{i \in l} \alpha_{i} \Longleftrightarrow \exists i \in I: t \vDash \alpha_{i}$.

To show MC can express all downward-closed properties, we show that the global disjunction is definable for classical formulas. For $\{\alpha\}_{i \in I} \subseteq \mathbf{M L}_{\rightarrow}$ define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right)
$$

$$
\text { E.g., } \alpha \mathbb{v} \beta=(\nabla \neg \alpha \rightarrow \alpha) \wedge(\nabla \neg \beta \rightarrow \beta)
$$

## Lemma

$$
t \vDash \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \vDash \alpha_{i} .
$$

## Proof.

$\Longrightarrow$ : Assume for contradiction that for all $i \in I$ there is some $v_{i} \in t$ with $v_{i} \vDash \neg \alpha_{i}$.

To show MC can express all downward-closed properties, we show that the global disjunction is definable for classical formulas. For $\{\alpha\}_{i \in I} \subseteq \mathbf{M L}_{\rightarrow}$ define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right) \quad \text { E.g., } \alpha \mathbb{V} \beta=(\nabla \neg \alpha \rightarrow \alpha) \wedge(\nabla \neg \beta \rightarrow \beta)
$$

## Lemma

$$
t \models \mathbb{V}_{i \epsilon 1} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i} .
$$

## Proof.

$\Longrightarrow$ : Assume for contradiction that for all $i \in I$ there is some $v_{i} \in t$ with $v_{i} \vDash \neg \alpha_{i}$. Then for each $i \in I: t \models \nabla \neg \alpha_{i}$.

To show MC can express all downward－closed properties，we show that the global disjunction is definable for classical formulas．For $\{\alpha\}_{i \in I} \subseteq \mathbf{M L}_{\rightarrow}$ define：

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right) \quad \text { E.g., } \alpha \mathbb{V} \beta=(\nabla \neg \alpha \rightarrow \alpha) \wedge(\nabla \neg \beta \rightarrow \beta)
$$

## Lemma

$$
t \models \mathbb{V}_{i \epsilon 1} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i} .
$$

## Proof．

$\Longrightarrow$ ：Assume for contradiction that for all $i \in I$ there is some $v_{i} \in t$ with $v_{i} \vDash \neg \alpha_{i}$ ．Then for each $i \in I: t \models \nabla \neg \alpha_{i}$ ．By $t \models\left(\bigwedge_{j \in \Lambda \backslash\{i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$ ，we have $t \models \alpha_{i}$ for all $i \in I$ ，a contradiction．

To show MC can express all downward-closed properties, we show that the global disjunction is definable for classical formulas. For $\{\alpha\}_{i \in I} \subseteq \mathbf{M L}_{\rightarrow}$ define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right) \quad \text { E.g., } \alpha \mathbb{V} \beta=(\nabla \neg \alpha \rightarrow \alpha) \wedge(\nabla \neg \beta \rightarrow \beta)
$$

## Lemma

$$
t \vDash \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i} .
$$

## Proof.

$\Longrightarrow$ : Assume for contradiction that for all $i \in I$ there is some $v_{i} \in t$ with $v_{i} \vDash \neg \alpha_{i}$. Then for each $i \in I: t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \vDash \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \vDash \alpha_{i}$.

To show MC can express all downward-closed properties, we show that the global disjunction is definable for classical formulas. For $\{\alpha\}_{i \in I} \subseteq \mathbf{M L}_{\rightarrow}$ define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right) \quad \text { E.g., } \alpha \mathbb{V} \beta=(\nabla \neg \alpha \rightarrow \alpha) \wedge(\nabla \neg \beta \rightarrow \beta)
$$

## Lemma

$$
t \vDash \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i} .
$$

## Proof.

$\Longrightarrow$ : Assume for contradiction that for all $i \in I$ there is some $v_{i} \in t$ with $v_{i} \vDash \neg \alpha_{i}$. Then for each $i \in I: t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \backslash \backslash\{i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \vDash \alpha_{i}$.
$\Longleftarrow:$ Let $t \models \alpha_{i}$.

To show MC can express all downward－closed properties，we show that the global disjunction is definable for classical formulas．For $\{\alpha\}_{i \in I} \subseteq \mathbf{M L}_{\rightarrow}$ define：

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right) \quad \text { E.g., } \alpha \mathbb{V} \beta=(\nabla \neg \alpha \rightarrow \alpha) \wedge(\nabla \neg \beta \rightarrow \beta)
$$

## Lemma

$$
t \vDash \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i} .
$$

## Proof．

$\Longrightarrow$ ：Assume for contradiction that for all $i \in I$ there is some $v_{i} \in t$ with $v_{i} \vDash \neg \alpha_{i}$ ．Then for each $i \in I: t \vDash \nabla \neg \alpha_{i}$ ．By $t \models\left(\bigwedge_{j \in \backslash \backslash\{i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$ ，we have $t \models \alpha_{i}$ for all $i \in I$ ，a contradiction． So for some $i \in I$ we must have have $t \vDash \alpha_{i}$ ．
$\Longleftarrow$ ：Let $t \models \alpha_{i}$ ．Let $s \subseteq t$ be such that $s \models \wedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$ ．

To show MC can express all downward－closed properties，we show that the global disjunction is definable for classical formulas．For $\{\alpha\}_{i \epsilon 1} \subseteq \mathbf{M L}_{\rightarrow}$ define：

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right) \quad \text { E.g., } \alpha \mathbb{V} \beta=(\nabla \neg \alpha \rightarrow \alpha) \wedge(\nabla \neg \beta \rightarrow \beta)
$$

## Lemma

$$
t \models \mathbb{V}_{i \epsilon l} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i} .
$$

## Proof．

$\Longrightarrow$ ：Assume for contradiction that for all $i \in I$ there is some $v_{i} \in t$ with $v_{i} \vDash \neg \alpha_{i}$ ．Then for each $i \in I: t \models \nabla \neg \alpha_{i}$ ．By $t \models\left(\bigwedge_{j \in \backslash \backslash\{i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$ ，we have $t \models \alpha_{i}$ for all $i \in I$ ，a contradiction． So for some $i \in I$ we must have have $t \vDash \alpha_{i}$ ．
$\Longleftarrow$ ：Let $t \vDash \alpha_{i}$ ．Let $s \subseteq t$ be such that $s \models \wedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$ ．By downward closure also $s \models \alpha_{i}$ ．

To show MC can express all downward－closed properties，we show that the global disjunction is definable for classical formulas．For $\{\alpha\}_{i \epsilon 1} \subseteq \mathbf{M L}_{\rightarrow}$ define：

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right) \quad \text { E.g., } \alpha \mathbb{V} \beta=(\nabla \neg \alpha \rightarrow \alpha) \wedge(\nabla \neg \beta \rightarrow \beta)
$$

## Lemma

$$
t \vDash \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i} .
$$

## Proof．

$\Longrightarrow$ ：Assume for contradiction that for all $i \in I$ there is some $v_{i} \in t$ with $v_{i} \vDash \neg \alpha_{i}$ ．Then for each $i \in I: t \vDash \nabla \neg \alpha_{i}$ ．By $t \models\left(\bigwedge_{j \in \backslash \backslash\{i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$ ，we have $t \models \alpha_{i}$ for all $i \in I$ ，a contradiction． So for some $i \in I$ we must have have $t \vDash \alpha_{i}$ ．
$\Longleftarrow$ ：Let $t \models \alpha_{i}$ ．Let $s \subseteq t$ be such that $s \models \wedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$ ．By downward closure also $s \models \alpha_{i}$ ． So $t \vDash\left(\wedge_{j \in \Lambda\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$ ．

To show MC can express all downward-closed properties, we show that the global disjunction is definable for classical formulas. For $\{\alpha\}_{i \epsilon 1} \subseteq \mathbf{M L}_{\rightarrow}$ define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right) \quad \text { E.g., } \alpha \mathbb{V} \beta=(\nabla \neg \alpha \rightarrow \alpha) \wedge(\nabla \neg \beta \rightarrow \beta)
$$

## Lemma

$t \vDash \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \vDash \alpha_{i}$.

## Proof.

$\Longrightarrow$ : Assume for contradiction that for all $i \in I$ there is some $v_{i} \in t$ with $v_{i} \vDash \neg \alpha_{i}$. Then for each $i \in I: t \vDash \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \backslash \backslash\{i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \vDash \alpha_{i}$.
$\Longleftarrow$ : Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \wedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \vDash\left(\bigwedge_{j \epsilon \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$.

To show MC can express all downward-closed properties, we show that the global disjunction is definable for classical formulas. For $\{\alpha\}_{i \epsilon 1} \subseteq \mathbf{M L}_{\rightarrow}$ define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right) \quad \text { E.g., } \alpha \mathbb{V} \beta=(\nabla \neg \alpha \rightarrow \alpha) \wedge(\nabla \neg \beta \rightarrow \beta)
$$

## Lemma

$$
t \vDash \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i} .
$$

## Proof.

$\Longrightarrow$ : Assume for contradiction that for all $i \in I$ there is some $v_{i} \in t$ with $v_{i} \vDash \neg \alpha_{i}$. Then for each $i \in I: t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \backslash \backslash\{i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \vDash \alpha_{i}$.
$\Longleftarrow$ : Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \wedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \vDash\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$. There can be no $s \subseteq t$ such that $s \models \Lambda_{j \in \backslash\{k\}} \nabla \neg \alpha_{j}$ because $s \models \alpha_{i}$.

To show MC can express all downward-closed properties, we show that the global disjunction is definable for classical formulas. For $\{\alpha\}_{i \epsilon 1} \subseteq \mathbf{M L}_{\rightarrow}$ define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right) \quad \text { E.g., } \alpha \mathbb{V} \beta=(\nabla \neg \alpha \rightarrow \alpha) \wedge(\nabla \neg \beta \rightarrow \beta)
$$

## Lemma

$$
t \vDash \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i} .
$$

## Proof.

$\Longrightarrow$ : Assume for contradiction that for all $i \in I$ there is some $v_{i} \in t$ with $v_{i} \vDash \neg \alpha_{i}$. Then for each $i \in I: t \vDash \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \backslash \backslash\{i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \vDash \alpha_{i}$.
$\Longleftarrow$ : Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \wedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \vDash\left(\bigwedge_{j \epsilon \Lambda \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$. There can be no $s \subseteq t$ such that $s \models \bigwedge_{j \epsilon \backslash \backslash k\}} \nabla \neg \alpha_{j}$ because $s \models \alpha_{i}$. Therefore $t \models\left(\bigwedge_{j \in \backslash \backslash k\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{k}$.

To show MC can express all downward-closed properties, we show that the global disjunction is definable for classical formulas. For $\{\alpha\}_{i \epsilon 1} \subseteq \mathbf{M L}_{\rightarrow}$ define:

$$
\bigvee_{i \in I} \alpha_{i}:=\bigwedge_{i \in I}\left(\left(\bigwedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}\right) \quad \text { E.g., } \alpha \mathbb{V} \beta=(\nabla \neg \alpha \rightarrow \alpha) \wedge(\nabla \neg \beta \rightarrow \beta)
$$

## Lemma

$$
t \models \mathbb{V}_{i \in I} \alpha_{i} \Longleftrightarrow \exists i \in I: t \models \alpha_{i} .
$$

## Proof.

$\Longrightarrow$ : Assume for contradiction that for all $i \in I$ there is some $v_{i} \in t$ with $v_{i} \vDash \neg \alpha_{i}$. Then for each $i \in I: t \models \nabla \neg \alpha_{i}$. By $t \models\left(\bigwedge_{j \in \backslash \backslash\{i\}} \nabla \neg \alpha_{i}\right) \rightarrow \alpha_{i}$, we have $t \models \alpha_{i}$ for all $i \in I$, a contradiction. So for some $i \in I$ we must have have $t \vDash \alpha_{i}$.
$\Longleftarrow$ : Let $t \models \alpha_{i}$. Let $s \subseteq t$ be such that $s \models \wedge_{j \in \backslash\{i\}} \nabla \neg \alpha_{j}$. By downward closure also $s \models \alpha_{i}$. So $t \vDash\left(\bigwedge_{j \in \Lambda \backslash i\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{i}$. Now fix $k \neq i ; k \in I$. There can be no $s \subseteq t$ such that $s \models \bigwedge_{j \epsilon \backslash \backslash k\}} \nabla \neg \alpha_{j}$ because $s \models \alpha_{i}$. Therefore $t \models\left(\bigwedge_{j \epsilon \backslash \backslash k\}} \nabla \neg \alpha_{j}\right) \rightarrow \alpha_{k}$.

## Theorem

MC is complete for convex properties invariant under bounded bisimulation.

Updated picture:


Relationship with inquisitive logic: Let PC be the propositional fragment of MC—syntax:

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \rightarrow \phi| \nabla \phi
$$

$\operatorname{InqB}$, propositional inquisitive logic, has the syntax:

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \rightarrow \phi| \phi \vee \phi
$$

InqB is expressively complete for downward-closed properties with the empty state property, so $\|I n q B\| \subset\|\mathbf{P C}\| .{ }^{*}$ is not definable in general in $\mathbf{P C}$ (since $\mathbf{P C}+\vee$ is not convex).

Similar logics which are either not convex or cannot express all convex properties (we consider propositional logics for simplicity):
$P L_{\rightarrow}(\mathbb{V}, \nabla)$ (propositional inquisitive logic with $\nabla$ ) is not convex. Example:

$$
(p \wedge \nabla q) \vee(a \wedge \nabla b)
$$

Relationship with inquisitive logic: Let PC be the propositional fragment of MC—syntax:

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \rightarrow \phi| \nabla \phi
$$

$\operatorname{InqB}$, propositional inquisitive logic, has the syntax:

$$
\phi::=p|\perp| \phi \wedge \phi|\phi \rightarrow \phi| \phi \vee \phi
$$

$\operatorname{InqB}$ is expressively complete for downward-closed properties with the empty state property, so $\|I n q B\| \subset\|\mathbf{P C}\| .{ }^{*}$ is not definable in general in $\mathbf{P C}$ (since $\mathbf{P C}+\vee$ is not convex).

Similar logics which are either not convex or cannot express all convex properties (we consider propositional logics for simplicity):
$P L_{\rightarrow}(\mathbb{V}, \nabla)$ (propositional inquisitive logic with $\nabla$ ) is not convex. Example:
$(p \wedge \nabla q) \vee(a \wedge \nabla b)$.
$P L_{\rightarrow}(\mathrm{NE})$ is not complete for convex properties because it is "downward closed except for the empty state": $s \vDash \phi$ and $t \subseteq s$ where $t \neq \varnothing$ imply $t \vDash \phi$. Similarly for $P L_{\rightarrow}(\mathrm{NE}, \mathbb{v})$.

Topics for further investigation:

Over formulas, dependence logic characterizes all downward closed $\Sigma_{1}^{1}$-properties. What logic characterizes all convex $\Sigma_{1}^{1}$-properties?

Are there any linguistic applications of convex team logic?

## References

[1] Maria Aloni. Logic and conversation: the case of free choice. Semantics and Pragmatics, 15(5), 2022. doi: 10.3765/sp.15.5.
[2] Aleksi Anttila. The logic of free choice. axiomatizations of state-based modal logics. MSc thesis, University of Amsterdam, 2021.
[3] Lauri Hella and Johanna Stumpf. The expressive power of modal logic with inclusion atoms. Electronic Proceedings in Theoretical Computer Science, 193:129-143, 2015. doi: 10.4204/eptcs.193.10.
[4] Lauri Hella, Kerkko Luosto, Katsuhiko Sano, and Jonni Virtema. The expressive power of modal dependence logic. In Barteld Kooi Rajeev Goré and Agi Kurucz, editors, Advances in Modal Logic, volume 10, pages 294-312. College Publications, 2014. doi: 10.48550/arXiv.1406.6266.
[5] Juha Kontinen, Julian-Steffen Müller, Henning Schnoor, and Heribert Vollmer. A van Benthem theorem for modal team semantics. In Stephan Kreutzer, editor, 24th EACSL Annual Conference on Computer Science Logic (CSL 2015), volume 41 of Leibniz International Proceedings in Informatics (LIPIcs), pages 277-291. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015. doi: 10.4230/LIPIcs.CSL.2015.277.
[6] Jouko Väänänen. Dependence Logic: a New Approach to Independence Friendly Logic. Cambridge University Press, 2007. doi: 10.1017/CBO9780511611193.
[7] Fan Yang. Modal dependence logics: axiomatizations and model-theoretic properties. Logic Journal of the IGPL, 25(5):773-805, 2017. doi: 10.1093/jigpal/jzx023.
[8] Fan Yang and Jouko Väänänen. Propositional team logics. Annals of Pure and Applied Logic, 168(7):1406-1441, 2017. doi: 10.1016/j.apal.2017.01.007.

